题目:http://www.rqnoj.cn/problem/123

  不得不说,RQNOJ 的机子跑得好慢呀,5*10的数据范围本地跑 0.2s,服务器上愣是把我卡掉了,最后只好写了一份 Pascal 交上去

    本地跑

  

    OJ上跑

  

   咳咳,言归正传

  普通的背包是求出最优的那一钟方案,方程转移是 f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]),相当于把 2 个变量经比较后丢到 1 个变量里,也就是 k=1时的情况

  而现在我们需要求最优的前 k 组方案,那么可以把数组再增加一维,变成把 2k 个变量经比较后丢进k个数里,也就是 2 个线性表丢进 1 个线性表里,由于线性表内数据是单调下降的,则可以按照归并排序的做法做

  实现操作中还可以滚掉第一维,那么 j 就要递减枚举

  以下是 C++ 的,但是会TLE

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; const int V=,K=,maxint=;
int f[V][K],g[K];
int main()
{
int i,j,n,m,s,ans=,q1,q2,k,w,v;
scanf("%d%d%d",&m,&s,&n);
for (i=;i<=s;i++)
for (j=;j<=m;j++) f[i][j]=-maxint;
f[][]=;
for (i=;i<=n;i++)
{
scanf("%d%d",&w,&v);
for (j=s;j>=w;j--)
{
if (f[j-w][]<) continue;
q1=q2=;
for (k=;k<=m;k++)
if (f[j-w][q1]+v>f[j][q2]) g[k]=f[j-w][q1++]+v;
else g[k]=f[j][q2++];
for (k=;k<=m;k++) f[j][k]=g[k];
}
}
for (i=;i<=m;i++) ans+=f[s][i];
printf("%d\n",ans);
return ;
}

  这个是 Pascal 的,可以AC

 program xqz;
uses math;
const maxv=; maxk=;
type arr=array[..maxk] of longint;
var
c,w,i,j,m,n,k,mv,mk,l,r,b,p,e,s,t,v:longint;
yes:boolean;
f:array[..maxv,..maxk] of longint;
ans,now:int64;
procedure work(var a:arr; b,c:arr);
var l,r:longint;
begin
l:=; r:=;
while (l+r-<mk)and ((b[l]<>-)or(c[r]<>-)) do
begin
while (b[l]<>-)and((c[r]=-)or(b[l]>=c[r]+w))and(l+r-<mk) do
begin
a[l+r-]:=b[l]; inc(l);
end;
while (c[r]<>-)and((b[l]=-)or(b[l]<=c[r]+w))and(l+r-<mk) do
begin
a[l+r-]:=c[r]+w; inc(r);
end;
end;
end; begin
readln(mk,mv,n); fillchar(f,sizeof(f),$ff);
f[,]:=;
for i:= to n do
begin
readln(c,w); now:=now+c;
for j:=min(now,mv) downto c do
work(f[j],f[j],f[j-c])
end;
for k:= to mk do
inc(ans,f[mv,k]);
writeln(ans);
close(input); close(output);
end.

版权所有,转载请联系作者,违者必究

QQ:740929894

RQNOJ123_多人背包_C++_Pascal的更多相关文章

  1. P1858 多人背包

    P1858 多人背包 题目描述 求01背包前k优解的价值和 要求装满 调试日志: 初始化没有赋给 dp[0] Solution 首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界 ...

  2. 洛谷 P1858 多人背包 解题报告

    P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...

  3. [洛谷P1858] 多人背包

    洛谷题目链接:多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数K.V.N 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 输入输出样例 输入样例# ...

  4. 背包【p1858】 多人背包(次优解 or 第k优解)

    题目描述--->p1858 多人背包 分析: 很明显,这题是背包问题的一种变形. 求解 次优解or第k优解. 表示刚开始有点懵,看题解也看不太懂. 又中途去补看了一下背包九讲 然后感觉有些理解, ...

  5. [XJOI]noip43 T2多人背包

    多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...

  6. 洛谷 P1858 多人背包 DP

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...

  7. 洛谷 P1858 多人背包

    求01背包前k优解的价值和 输入输出格式 Input/output 输入格式:第一行三个数K.V.N(k<=50,v<=5000,n<=200)接下来每行两个数,表示体积和价值输出格 ...

  8. 【动态规划】【归并】Vijos P1412 多人背包

    题目链接: https://vijos.org/p/1412 题目大意: 求01背包的前K优解,要求必须装满(1<=K<=50 0<=V<=5000 1<=N<=2 ...

  9. 【洛谷P1858】多人背包

    题目大意:求解 0-1 背包前 K 优解的和. 题解:首先,可知对于状态 \(dp[j]\) 来说,能够转移到该状态的只有 \(dp[j],dp[j-w[i]]\).对于 K 优解来说,只需对状态额外 ...

随机推荐

  1. PHPExcel 中文使用手册详解

    /** * * execl数据导出 * 应用场景:订单导出 * @param string $title 模型名(如Member),用于导出生成文件名的前缀 * @param array $cellN ...

  2. Leetcode 538. 把二叉搜索树转换为累加树

    题目链接 https://leetcode.com/problems/convert-bst-to-greater-tree/description/ 题目描述 大于它的节点值之和. 例如: 输入: ...

  3. 自定义注解不能拦截controller层

    1,首先在springMVC的配置文件中,webapp/WEB-INF/servlet.xml,加上AOP的相关内容: <beans xmlns="http://www.springf ...

  4. 4 CSS的20/80个知识点

    1.css的基本构成 样式选择器 id选择器 元素选择器 2.css的盒模型 border padding margin 3.Atom快捷键 4.程序 (1)初始程序 <!DOCTYPE htm ...

  5. 简洁好看的form样式收藏

    本文转载自 http://www.laozuo.org/3495.html 为了方便自己查阅所以搬运过来,如有侵权希望原作者联系我删除不要突然去法院告我呀! 颜色样式啥的都可以根据需求自己调整的,这些 ...

  6. git命令行操作详解

    目录 1.常用操作 1.1 新建代码库 1.2 配置 1.3 remote管理 1.4 添加和撤销操作 1.5 代码提交 1.6 分支操作 1.7 查看信息 1.8 pull操作 1.9 push操作 ...

  7. 《Cracking the Coding Interview》——第16章:线程与锁——题目4

    2014-04-27 20:06 题目:设计一个类,只有在不产生死锁的时候才分配资源. 解法:不太清楚这个题是要分配何种资源,以何种形式?所以没能动手写个可运行的代码,只是闲扯了几句理论分析. 代码: ...

  8. USACO刷题之路,开始了

    几天前,重新开始刷题了. 重新刷题有几个原因: 1.曾经的OI经历,如今除了悟性高些.知识多些,大多已经遗忘.不希望真的让之前的OI水平就这么丢了. 2.越来越觉得,刷题真的是一件很开心的事情.大学中 ...

  9. python multiprocessing.Pool 中map、map_async、apply、apply_async的区别

    multiprocessing是python的多进程库,multiprocessing.dummy则是多线程的版本,使用都一样. 其中都有pool池的概念,进程池/线程池有共同的方法,其中方法对比如下 ...

  10. virt-install command

    安装 virt-install --connect qemu:///system \ --virt-type=kvm \ --name windows2008 --ram --vcpus --arch ...