题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3550

题意:给出3×n个数字,从中选出一些数字,要求每连续的n个数字中选出的数字个数不超过K。使得选出的数字之和最大。

思路:跟这个差不多

http://www.cnblogs.com/jianglangcaijin/p/3799759.html

流量平衡方程:a[i]表示i选不选,b[i]表示第i个等式的辅助变量

0=0

a[1]+a[2]+……a[n]+b[1]=k
a[2]+a[3]+……a[n+1]+b[2]=k
…………
a[2*n+1]+a[2*n+2]+……+a[3*n]+b[2*n+1]=k
0=0
相减之后是:
a[1]+a[2]+……a[n]+b[1]=k
a[n+1]-a[1]+b[2]-b[1]=0
a[n+2]-a[2]+b[3]-b[2]=0
…………
-a[2*n+1]-a[2*n+2]-………-a[3*n]-b[2*n+1]=-k
 
struct node
{
    int u,v,flow,cost,next;
};

node edges[N*100];
int head[N],e;

void add(int u,int v,int flow,int cost)
{
    edges[e].u=u;
    edges[e].v=v;
    edges[e].cost=cost;
    edges[e].flow=flow;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int flow,int cost)
{
    add(u,v,flow,cost);
    add(v,u,0,-cost);
}

int C[N],F[N],pre[N];
int visit[N];

int SPFA(int s,int t)
{
    clr(pre,-1);
    queue<int> Q;
    Q.push(s);
    int i;
	for(i=0;i<=t;i++) C[i]=INF,F[i]=0,visit[i]=0;
    int u,v,c,f;
    C[s]=0; F[s]=INF;
    while(!Q.empty())
    {
        u=Q.front();
        Q.pop();

        visit[u]=0;
        for(i=head[u];i!=-1;i=edges[i].next)
        {
            v=edges[i].v;
            c=edges[i].cost;
            f=edges[i].flow;
            if(f>0&&C[v]>C[u]+c)
            {
                C[v]=C[u]+c;
                F[v]=min(F[u],f);
                pre[v]=i;
                if(!visit[v])
                {
                    Q.push(v);
                    visit[v]=1;
                }
            }
        }
    }
    return F[t];
}

int MCMF(int s,int t)
{
    int ans=0,i,temp,x;
    while(temp=SPFA(s,t))
    {
        for(i=t;i!=s;i=edges[pre[i]].u)
        {
            x=pre[i];
            ans+=temp*edges[x].cost;
            edges[x].flow-=temp;
            edges[x^1].flow+=temp;
        }
    }
    return ans;
}

int n,K;

int a[N];

int main()
{

	n=getInt();
	K=getInt();
	clr(head,-1);
	int s=0,t=3*n+1;
	int i;
	for(i=1;i<=n*3;i++) a[i]=getInt();

	Add(s,1,K,0);
	Add(2*n+2,t,K,0);
	for(i=1;i<=n;i++) Add(1,i+1,1,-a[i]);
	for(i=n+1;i<=2*n;i++) Add(i-n+1,i+1,1,-a[i]);
	for(i=2*n+1;i<=3*n;i++) Add(i-n+1,2*n+2,1,-a[i]);
	for(i=1;i<=2*n+1;i++) Add(i,i+1,INF,0);

	int ans=MCMF(s,t);
	printf("%d\n",-ans);
}
 

BZOJ 3550 Vacation(最小费用最大流)的更多相关文章

  1. BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流

    传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...

  2. BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)

    题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...

  3. 【BZOJ】1221: [HNOI2001] 软件开发(最小费用最大流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1221 先吐槽一下,数组依旧开小了RE:在spfa中用了memset和<queue>的版本 ...

  4. BZOJ 1927 星际竞速(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...

  5. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  6. bzoj 1877 [SDOI2009]晨跑(最小费用最大流)

    Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十 ...

  7. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  8. bzoj 2245 [SDOI2011]工作安排(最小费用最大流)

    2245: [SDOI2011]工作安排 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1197  Solved: 580[Submit][Statu ...

  9. bzoj 1070 [SCOI2007]修车(最小费用最大流)

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3515  Solved: 1411[Submit][Status] ...

  10. BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)

    不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...

随机推荐

  1. 【转】C#访问权限修饰符

    C#访问权限修饰符 C#中类及类型成员修饰符有以下四类:public,private,protected,internal. public        类及类型成员的修饰符 private 类型成员 ...

  2. Android NDK开发(五)--C代码回调Java代码【转】

    转载请注明出处:http://blog.csdn.net/allen315410/article/details/41862479 在上篇博客里了解了Java层是怎样传递数据到C层代码,并且熟悉了大部 ...

  3. 161110、彻底征服 Spring AOP 之 实战篇

    Spring AOP 实战 看了上面这么多的理论知识, 不知道大家有没有觉得枯燥哈. 不过不要急, 俗话说理论是实践的基础, 对 Spring AOP 有了基本的理论认识后, 我们来看一下下面几个具体 ...

  4. JVM 指令集

    指令码 助记符 说明 0x00 nop 什么都不做 0x01 aconst_null 将null推送至栈顶 0x02 iconst_m1 将int型-1推送至栈顶 0x03 iconst_0 将int ...

  5. Recovery with Incremental Backups

    During media recovery, RMAN examines the restored files to determine whether it can recover them wit ...

  6. org.hibernate.TransientObjectException

    使用JPA注解@ManyToMany做一个多对多的用例. 为了避免在删除主表数据时同时级联删除从表数据,JPA官方文档建议在主表的从表字段使用级联注解:CascadeType.PERSIST,Casc ...

  7. mysql5.5.x升级到mysql5.6.x

    大概步骤是: 把配置文件添加:skip-grant-tables参数,把basedir升级成新版本,启动mysql,执行命令:mysql_upgrade升级一下字典信息,然后flush privile ...

  8. python:配置文件configparser

    #-*- coding:utf8 -*- # Auth:fulimei import configparser #第一个标签 conf=configparser.ConfigParser() conf ...

  9. C# PDF添加水印

    需要iTextSharp.dll, 下载地址http://sourceforge.net/projects/itextsharp/ using System;using System.Collecti ...

  10. hdu1024 Max Sum Plus Plus

    动态规划,给定长度为n(≤1e6)的整数数组和整数m,选取m个连续且两两无交集的子区间,求所有方案中使得区间和最大的最大值. dp[i][j]表示结束位置(最后一个区间最后一个元素的位置)为i且选取区 ...