【GDKOI 2024 TG Day2】染色(set) 题解
发现我们给一个点染上色后有:
我们称这是一个大小为 1 的十字。
进一步地,我们给这 5 个点再次染上色后有:
我们称这是一个大小为 2 的十字。
同理可得,我们给这 5 个点染上相同的大小为 2 的十字,可得一个大小为 4 的十字:
假设我们图的边长为 \(N=2^n\),我们只需要染上一个大小为 \(w=\frac{N}{2}\) 的十字,左边的那一个点就会和右边的点抵消,上面的点就会和下面的点抵消。最终效果就是只染了一个点。
假如我们要染一个大小为 \(w=\frac{N}{2}\) 的十字,可以通过在这个十字的 5 个红色的点位染上 5 个大小为 \(\frac{w}{2}=\frac{N}{4}\) 的十字来实现:
同理,我们可以使用分治来实现这一过程,最后就只会需要染若干个大小为 1 的十字,这就是题目“绘画操作”的定义。
我们只需要对于每个需要染色的位置跑一遍分治即可。时间复杂度由 \(T(n)=5T(\frac{n}{2})+O(1)\) 得 \(O(N^2n^{\log_25})\),期望得分 35。
#include <cstdio>
#include <cstdlib>
#include <set>
#define ll long long
#define N 3000
using namespace std;
ll n, siz;
ll a[N][N], v[N][N];
ll tot;
inline ll calc(ll x) {
return (x%siz+siz)%siz;
}
void fun(ll x, ll y, ll w) {
if(w == 1) {
v[x][y] ^= 1;
return;
}
fun(x, y, w/2);
fun(calc(x+w/2), y, w/2);
fun(calc(x-w/2), y, w/2);
fun(x, calc(y+w/2), w/2);
fun(x, calc(y-w/2), w/2);
}
int main() {
freopen("set.in", "r", stdin);
freopen("set.out", "w", stdout);
scanf("%lld", &n);
siz = 1<<n;
for(ll i = 0; i < siz; i++) {
for(ll j = 0; j < siz; j++) {
scanf("%lld", &a[i][j]);
}
}
for(ll i = 0; i < siz; i++) {
for(ll j = 0; j < siz; j++) {
if(a[i][j]) {
fun(i, j, siz / 2);
}
}
}
for(ll i = 0; i < siz; i++) {
for(ll j = 0; j < siz; j++) {
if(v[i][j]) {
tot++;
}
}
}
printf("%lld\n", tot);
for(ll i = 0; i < siz; i++) {
for(ll j = 0; j < siz; j++) {
if(v[i][j]) {
printf("%lld %lld\n", i, j);
}
}
}
}
考虑为什么会这么慢,因为一个点可能被染了多次,这可以被抵消,我们可以枚举 \(w\),然后再同理得解。时间复杂度 \(O(N^2n)\),期望 100。
不要开 long long。
#include <cstdio>
#include <cstdlib>
#include <set>
#define N 3000
using namespace std;
int n, siz;
bool a[N][N], v[N][N];
int tot;
inline int calc(int x) {
return (x % siz + siz) % siz;
}
inline int read() {
int x = 0;
char c = '.';
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ '0');
c = getchar();
}
return x;
}
void print(int x) {
if(x > 9) print(x / 10);
putchar(x % 10 + '0');
}
int main() {
freopen("set.in", "r", stdin);
freopen("set.out", "w", stdout);
n = read();
siz = 1<<n;
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
a[i][j] = read();
}
}
for(int w = siz/2; w >= 2; w /= 2) {
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
v[i][j] = 0;
}
}
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
if(a[i][j]) {
v[i][j] ^= 1;
v[calc(i+w/2)][j] ^= 1;
v[calc(i-w/2)][j] ^= 1;
v[i][calc(j+w/2)] ^= 1;
v[i][calc(j-w/2)] ^= 1;
}
}
}
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
a[i][j] = v[i][j];
}
}
}
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
if(v[i][j]) {
tot++;
}
}
}
print(tot);
putchar('\n');
for(int i = 0; i < siz; i++) {
for(int j = 0; j < siz; j++) {
if(v[i][j]) {
print(i);
putchar(' ');
print(j);
putchar('\n');
}
}
}
}
【GDKOI 2024 TG Day2】染色(set) 题解的更多相关文章
- noip2014提高组day2二题题解-rLq
(又是昨天的作业……本题写于昨天) (这破题都做这么久,我是不是吃枣药丸……) (好吧这是一道图论题呢) 本题地址:http://www.luogu.org/problem/show?pid=2296 ...
- 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)
计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...
- 【NOIP2013】Day2不完全题解+代码
T1 直接递归区间,从1-n开始,找到这个区间中的最小值然后将区间里的所有值都减去这个最小值 以被减去最小值之后的零点为分段分别递归处理即可. #include <algorithm> # ...
- CH Round #58 - OrzCC杯noip模拟赛day2
A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...
- CH Round #49 - Streaming #4 (NOIP模拟赛Day2)
A.二叉树的的根 题目:http://www.contesthunter.org/contest/CH%20Round%20%2349%20-%20Streaming%20%234%20(NOIP 模 ...
- BJOI2018爆零记
没啥可说的 Day1 0分 T1 给你一个二进制串,每次修改一个位置,询问[l,r]区间中有多少二进制子串重排后能被3整除 T2 一个无向图(无重边自环)每个点有一个包含两种颜色的染色集合,一个边的两 ...
- Vijos P1740聪明的质检员
题目 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri]:2. ...
- AtCoder Grand Contest 015
传送门 A - A+...+B Problem 题意:n个数最大值a,最小值b,求和的可能数量. #include<cstdio> #include<algorithm> us ...
- dp水一天
水一些dp的联系题 标签: dp ###hdu_2045 题意 一穿珠子,用三种颜色染色,要求相邻的珠子和两端的珠子不能是同一种颜色,求当有n个珠子的时候有几种染色方案 题解 表示dp[i][j][k ...
- 【CF1141G】Privatization of Roads in Treeland
题目大意:给定一个 N 个点的无根树,现给这个树进行染色.定义一个节点是坏点,若满足与该节点相连的至少两条边是相同的颜色,求至多有 k 个坏点的情况下最少需要几种颜色才能进行合法染色. 题解:考虑一个 ...
随机推荐
- JS2-DOM
API和Web API API 应用程序编程接口,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,且又无需访问源码,或理解内部工作机制的细节 API是给程序员提供的一种工具,以便能 ...
- 安装VMware——Unable to install all modules.See log /tmp/vmware-han/vmware-6098.log for detalls.(Exit code 1)的解决方法(模块加载失败)
这是编译失败的原因在VM社区有这样一种解决方案,亲测有效,帮助我自己解决的麻烦,所有在这分享,希望能够帮助到小伙伴:不要被接下来的代码吓倒因为这是github上项目,所以要先在ubuntu上安装git ...
- stm32读写sd卡代码解析和调试总结
一 前言 做程序员真是来不得半点偷懒,假如你对经常使用的代码不熟悉,早晚会让你付出沉重的代价.像认识自己的灵魂一样认识每行用到的代码,这才是一个合格的程序员,才不至于在出现问题的时候出现慌乱. ...
- Android JNI静态和动态注册 、Java Reflect(C或C++层反射和JAVA层反射)、Java 可变参数(JNI实现)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- 简单使用vim编辑器的用法
vim的使用笔记可以涵盖很多内容,以下是一些基本操作和常见命令的简要总结: 启动Vim 打开或创建文件:vim filename 基本模式切换 正常模式(Normal Mode):启动时默认进入此模式 ...
- L7结合Turf.js实现空间分析与数据可视化
1. 概述 AntV L7 是蚂蚁集团 AntV 数据可视化团队推出的基于 WebGL 的开源大规模地理空间数据可视分析引擎,其特点是通过简单的代码进行配置,即可在前端网页中绘制精美的地图以及相关的图 ...
- H5外部浏览器唤起微信分享
最近在做一个手机站,要求点击分享可以直接打开微信分享出去.而不是jiathis,share分享这种的点击出来二维码.在网上看了很多,都说APP能唤起微信,手机网页实现不了.也找了很多都不能直接唤起微信 ...
- Matlab绘图(1)通过属性检查器调整绘图
Matlab图形属性检查器 和其他语言的绘图不一样的是,Matlab允许我们通过非编程的方式来自定义调整绘图.下面介绍Matlab图形的构成以及几种调整绘图时的常用操作. 图形构成 什么是Figure ...
- 使用Razor模板动态生成代码
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 为什么FTP会随着时间的过去而变慢?
有人问:我在XP上有FZ客户端3.5.3,在Vista上有0.9.41服务器.通过已经很慢的连接传输大文件时,我注意到速度开始时约为40kb / s,但逐渐趋于稳定,约为20kb / s,并保持这种状 ...