其实就是个大模拟。

首先,根据题意,小A和小B从任意一个城市开始走,无论\(X\)如何,其路径是一定唯一的。

显然对于两问都可以想出一个\(O(n^2)\)的暴力,即直接一步一步地向右走。

首先,我们当然需要知道A,B在每个城市的下一步如何走,记\(nexta(i),nextb(i)\)为A,B在\(i\)处时,下一步走到的城市编号。

考虑如何高效(复杂度小于等于\(O(nlogn)\))维护两个\(next\)。

显然不能直接维护每个城市与其后面的城市的差值,再好的数据结构也会到\(O(n^2)\)。

不妨考虑从后往前依次插入\(H_i\),然后动态维护\(H_i\sim H_n\)的有序集合。这样的话,在有序集合中,最小的差值一定要么是\(H_i\)与其前驱,要么就是与其后继的差值。次小的差值,就是\(H_i\)前驱、前驱的前驱、后继、后继的后继与\(H_i\)的差值的次小值。这个问题,平衡树解决之,预处理\(O(nlogn)\)。

下面考虑走\(k\)步的情况,当前步是A走还是B走与步数的奇偶性有关,因此我们还要分开讨论。

那么,我们不妨考虑以此为基础进行优化,比如优化到\(O(nlogn)\)。显然地,对于这样的问题,我们可以倍增预处理,\(O(logn)\)询问。

接下来考察我们需要什么信息,分别是\(i\)向后走\(k\)步的城市,A和B从\(i\)向后走\(k\)步的路程。

设\(f[0/1][i][j]\)为从\(i\)位置,0A,1B向后走\(2^j\)步的城市。

显然

\[f[0][i][0]=nexta(i)\\f[1][i][0]=nextb(i)
\]

由于,走\(2^0\)步是走奇数步,有转移

\[f[0][i][1]=f[1][f[0][i][0]][0]\\f[1][i][1]=f[0][f[1][i][0]][0]
\]

对于走\(2^j\)步,有

\[f[0][i][j]=f[0][f[0][i][j-1]][j-1]\\f[1][i][j]=f[1][f[1][i][j-1]][j-1]
\]

设\(da[0/1][i][j]\)表示从\(i\)位置,A向后走\(2^j\)步的路程,且现在(当前步)是0A,1B在开车,还没走时的A开的距离

显然

\[da[0][i][0]=dist(i,nexta(i))\\da[1][i][0]=0
\]

有转移

\[da[0][i][1]=da[0][i][0]+da[1][f[0][i][0]][0]\\da[1][i][1]=da[1][i][0]+da[0][f[1][i][0]][0]\\da[0][i][j]=da[0][i][j-1]+da[0][f[0][i][j-1]][j-1]\\da[1][i][j]=da[1][i][j-1]+da[1][f[1][i][j-1]][j-1]
\]

设\(db[0/1][i][j]\)表示从\(i\)位置,B向后走\(2^j\)步的路程,且现在是0A,1B在开车。

跟\(da\)差别不大,不再赘述。

预处理完成之后,我们开始考虑题述问题。

对于第一问,对给出的\(X_0\),我们枚举城市\(S_i\),倍增统计走\(X_0\)步的答案(当然超出\(N\)要特判),\(O(nlogn)\)解决之。

对于第二问,同样的,对于每一组\(S_i,X_i\),直接倍增统计即可,复杂度\(O(mlogn)\)。

总复杂度在\(O((n+m)logn)\)左右,完全可以通过本题。

注意,这道题的细节之数量足以让人去世。

代码未经重构,很丑。

参考代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<vector>
#define INF 0x7fffffff
#define PI acos(-1.0)
#define N 100010
#define MOD 2520
#define E 1e-12
#define ll long long
using namespace std;
inline ll read()
{
ll f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
set<int> h;
map<int,int> mp;
int t;
ll n,a[N],na[N],nb[N],f[2][N][21],da[2][N][21],db[2][N][21];
int main()
{
n=read();t=log2(n);
for(int i=1;i<=n;++i) a[i]=read();
a[0]=INF,a[n+1]=-INF;
h.insert(INF);
h.insert(-INF);
mp[-INF]=0,mp[INF]=n+1;
for(int i=n;i>=1;--i){
h.insert(a[i]);mp[a[i]]=i;
ll n1=((++h.find(a[i])!=h.end())?(*++h.find(a[i])):INF),n2=(((++(++h.find(a[i])))!=h.end())?(*++(++h.find(a[i]))):INF);
ll p1=((h.find(a[i])!=h.begin())?(*--h.find(a[i])):-INF),p2=((--h.find(a[i])!=h.end())?(*--(--h.find(a[i]))):-INF);
if(n1-a[i]>=a[i]-p1){
nb[i]=mp[p1];
na[i]=(n1-a[i]>=a[i]-p2)?mp[p2]:mp[n1];
}
else{
nb[i]=mp[n1];
na[i]=(n2-a[i]>=a[i]-p1)?mp[p1]:mp[n2];
}
f[0][i][0]=na[i];f[1][i][0]=nb[i];
da[0][i][0]=abs(a[i]-a[na[i]]);
db[1][i][0]=abs(a[i]-a[nb[i]]);
}
for(int j=1;j<=t;++j){
for(int i=1;i<=n;++i){
if(j==1){
f[0][i][1]=f[1][f[0][i][0]][0];
f[1][i][1]=f[0][f[1][i][0]][0];
da[0][i][1]=da[0][i][0]+da[1][f[0][i][0]][0];
da[1][i][1]=da[1][i][0]+da[0][f[1][i][0]][0];
db[0][i][1]=db[0][i][0]+db[1][f[0][i][0]][0];
db[1][i][1]=db[1][i][0]+db[0][f[1][i][0]][0];
}else{
f[0][i][j]=f[0][f[0][i][j-1]][j-1];
f[1][i][j]=f[1][f[1][i][j-1]][j-1];
da[0][i][j]=da[0][i][j-1]+da[0][f[0][i][j-1]][j-1];
da[1][i][j]=da[1][i][j-1]+da[1][f[1][i][j-1]][j-1];
db[0][i][j]=db[0][i][j-1]+db[0][f[0][i][j-1]][j-1];
db[1][i][j]=db[1][i][j-1]+db[1][f[1][i][j-1]][j-1];
}
}
}/
int x0=read(),s0=0;
double ans=1e14,nans=1e14;//task 1
for(int i=1;i<=n;++i){
int now=i;
ll resa=0,resb=0;
for(int j=t;j>=0;--j){
if(f[0][now][j]){
if(resa+resb+da[0][now][j]+db[0][now][j]>x0)
continue;
resa+=da[0][now][j];resb+=db[0][now][j];
now=f[0][now][j];
}
}
nans=(double)resa/(double)resb;
if(nans<ans){
ans=nans,s0=i;
}
else{
if(nans==ans&&a[s0]<a[i]) s0=i;
}
}
printf("%d\n",s0);
int m=read();//task 2
while(m--){
ll si=read(),xi=read();
ll resa=0,resb=0,now=si;
for(int j=t;j>=0;--j){
if(f[0][now][j]){
if(resa+resb+da[0][now][j]+db[0][now][j]>xi)
continue;
resa+=da[0][now][j];resb+=db[0][now][j];
now=f[0][now][j];
}
}
printf("%lld %lld\n",resa,resb);
}
return 0;
}

P1081 开车旅行[倍增](毒瘤题)的更多相关文章

  1. 洛谷 P1081 开车旅行 —— 倍增

    题目:https://www.luogu.org/problemnew/show/P1081 真是倍增好题! 预处理:f[i][j] 表示从 i 点开始走 2^j 次 AB (A,B各走一次)到达的点 ...

  2. 洛谷P1081 开车旅行(倍增)

    题意 题目链接 Sol 咕了一年的题解.. 并不算是很难,只是代码有点毒瘤 \(f[i][j]\)表示从\(i\)号节点出发走了\(2^j\)轮后总的距离 \(da[i][j]\)同理表示\(a\)的 ...

  3. P1081 [NOIP2012]开车旅行[倍增]

    P1081 开车旅行    题面较为啰嗦.大概概括:一个数列,只能从一个点向后走,两种方案:A.走到和自己差的绝对值次小的点B.走到和自己差的绝对值最小点:花费为此差绝对值:若干询问从规定点向后最多花 ...

  4. 洛谷 P1081 开车旅行(70)

    P1081 开车旅行 题目描述 小AA 和小BB 决定利用假期外出旅行,他们将想去的城市从 11到 NN 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ii的海 ...

  5. 2018.11.04 洛谷P1081 开车旅行(倍增)

    传送门 思路简单码量超凡? 感觉看完题大家应该都知道是倍增sbsbsb题了吧. 首先预处理出从每个点出发如果是AAA走到哪个点,如果是BBB走到哪个点. 然后利用刚刚预处理出的信息再预处理从每个点出发 ...

  6. 洛谷 P1081 开车旅行【双向链表+倍增】

    倍增数组的20和N写反了反复WAWAWA-- 注意到a和b在每个点上出发都会到一个指定的点,所以这样构成了两棵以n点为根的树 假设我们建出了这两棵树,对于第一问就可以枚举起点然后倍增的找出ab路径长度 ...

  7. [NOIP2012] 提高组 洛谷P1081 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  8. P1081 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  9. 【vijos1780】【NOIP2012】开车旅行 倍增

    题目描述 有\(n\)个城市,第\(i\)个城市的海拔为\(h_i\)且这\(n\)个城市的海拔互不相同.编号比较大的城市在东边.两个城市\(i,j\)之间的距离为\(|h_i-h_j|\) 小A和小 ...

随机推荐

  1. Gamma阶段第九次scrum meeting

    每日任务内容 队员 昨日完成任务 明日要完成的任务 张圆宁 #91 用户体验与优化https://github.com/rRetr0Git/rateMyCourse/issues/91(持续完成) # ...

  2. [Gamma] 发布说明

    [Gamma] 发布说明 发布网址为http://60.205.230.0 新功能前瞻 团队合作:支持多人合作完成项目 项目进度管理:便于监控项目进度 站内信系统:团队合作与审核需要 已知BUG修复 ...

  3. [经验分享]ThinkPad笔记本无法进入PE环境

    首先参考:https://jingyan.baidu.com/article/72ee561a564358e16138df14.html 可以设置Secure Boot然后重启电脑,按F1重新进入BI ...

  4. Jmeter之Bean shell使用(二)(转载)

    转载地址:https://www.cnblogs.com/puresoul/p/4949889.html 上一篇Jmeter之Bean shell使用(一)简单介绍了下Jmeter中的Bean she ...

  5. scrapy中间件中发送邮件

    背景介绍:之前写过通过通过scrapy的扩展发送邮件,在爬虫关闭的时候发送邮件.那个时候有个问题就是MailSender对象需要return出去.这次需要在中间件中发送邮件,但是中间件中不能随便使用r ...

  6. linux下杀掉某用户所有进程

    直接删除用户,提示该用户下还有进程,以下两种方法可解决: 1.结束所有username的进程(如果提示没有该命令,那么用下面方法) killall -u username 2.杀死某一用户下的所有进程 ...

  7. 【剑指offer】数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.我们 ...

  8. 天际PRO-CR16 改装方案

    本人现有红色CR16一台,宿舍在7楼,最近找了一份长期兼职,不想挤公交,想骑车去,经常上下楼很是痛苦,琢磨了两天两夜,终于出来第一套小该方案,有不合理地方,或者有个好的零件选择,请各位指点.本人不胜感 ...

  9. IDEA连接MySQL数据库报错08001

    今天在使用IDEA时连接数据库发生错误,所以用其自带的尝试连接得到如下错误:Connection to test@127.0.0.1 failed.[08001] Could not create c ...

  10. c#中泛型

    整理一下昨天学习的泛型,有不对的地方欢迎指正: 泛型类 定义一个类,这个类中某些字段的类型不确定,这些类型可以在构造类时确定下来 2.泛型方法 泛型方法就是定义一个方法,这个方法的参数类型可以是不确定 ...