不错的推柿子题

LOJ #2058

题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数


$ Solution:$

首先考虑第二类斯特林数的意义:将$ n$个有标号元素放入$ m$个无标号集合(无空集)的方案数

我们枚举空集的数量容斥:$ S(n,m)=\frac{1}{m!}\sum\limits_{k=0}^m(-1)^kC_m^k(m-k)^n$

乘上$ \frac{1}{m!}$是因为容斥的集合带标号而斯特林数本身不带标号

这样可以将原式展开得:

$ \sum\limits_{i=0}^n \sum\limits_{j=0}^n2^j \sum\limits_{k=0}^j(-1)^kC_j^k(j-k)^i$     (消阶乘项)

把组合数展开得$ \sum\limits_{i=0}^n \sum\limits_{j=0}^n 2^j j! \sum\limits_{k=0}^j \frac{(-1)^k}{k!} \frac{(j-k)^i}{(j-k)!}$

改变枚举顺序得$ \sum\limits_{j=0}^n 2^j j! \sum\limits_{k=0}^j \frac{(-1)^k}{k!} \frac{ \sum\limits_{i=0}^n (j-k)^i}{(j-k)!}$

令$ A(x)= \frac{(-1)^x}{x!}$,$ B(x)=\frac{ \sum\limits_{i=0}^n x^i}{x!}$

则原式为$ \sum\limits_{j=0}^n 2^j j! \sum\limits_{k=0}^jA(k)B(j-k)$

容易发现这是一个卷积形式,而函数$ A,B$均可以在$ O(n)$时间复杂度内完成

这样可以直接用$ NTT$优化,时间复杂度:$ O(n \ log \  n)$


$ my \ code:$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
int inv[],jc[],njc[];
int ksm(int x,int y){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
vector<int>A,B,f,R;int lim=;
int calc(int x,int L,int R){
if(x==)return R-L+;
return 1ll*(ksm(x,R+)-ksm(x,L))*ksm(x-,p-)%p;
}
void init(int n){
for(rt i=;i<=;i++)inv[i]=jc[i]=njc[i]=;
for(rt i=;i<=n;i++){
jc[i]=1ll*jc[i-]*i%p;
inv[i]=1ll*inv[p%i]*(p-p/i)%p;
njc[i]=1ll*njc[i-]*inv[i]%p;
}
while(lim<=n+n)lim<<=;
A.resize(lim);B.resize(lim);f.resize(lim);
A[]=;for(rt i=,tag=-;i<=n;i++,tag*=-)A[i]=tag*njc[i];
B[]=;for(rt i=;i<=n;i++)B[i]=1ll*njc[i]*calc(i,,n)%p;
}
namespace poly{
void getR(int n){
R.resize(n);
for(rt i=;i<n;i++)R[i]=(R[i>>]>>)|(i&)*(n>>);
}
void NTT(int n,vector<int>&A,int fla){
for(rt i=;i<n;i++)if(i>R[i])swap(A[i],A[R[i]]);
for(rt i=;i<n;i<<=){
int w=ksm(,(p-)//i);
for(rt j=;j<n;j+=i<<){
int K=;
for(rt k=;k<i;k++,K=1ll*K*w%p){
int x=A[j+k],y=1ll*K*A[i+j+k]%p;
A[j+k]=(x+y)%p,A[i+j+k]=(x-y)%p;
}
}
}
if(fla==-){
reverse(A.begin()+,A.end());int invn=ksm(n,p-);
for(rt i=;i<n;i++)A[i]=1ll*A[i]*invn%p;
}
}
}
using namespace poly;
int main(){
n=read();init(n);
int ans=;getR(lim);
NTT(lim,A,);NTT(lim,B,);
for(rt i=;i<lim;i++)f[i]=1ll*A[i]*B[i]%p;
NTT(lim,f,-);
for(rt i=;i<=n;i++)(ans+=1ll*ksm(,i)*jc[i]%p*f[i]%p)%=p;
cout<<(ans+p)%p;
return ;
}

LOJ #2058「TJOI / HEOI2016」求和的更多相关文章

  1. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  2. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  3. loj #2055. 「TJOI / HEOI2016」排序

    #2055. 「TJOI / HEOI2016」排序   题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...

  4. 「TJOI / HEOI2016」求和 的一个优秀线性做法

    我们把\(S(i, j)j!\)看成是把\(i\)个球每次选择一些球(不能为空)扔掉,选\(j\)次后把所有球都扔掉的情况数(顺序有关).因此\(S(i, j)j! = i![x^i](e^x - 1 ...

  5. loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增

    题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...

  6. loj2058 「TJOI / HEOI2016」求和

    推柿子 第二类斯特林数的容斥表达 fft卡精度就用ntt吧qwq. #include <iostream> #include <cstdio> using namespace ...

  7. AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ

    #2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...

  8. 「TJOI / HEOI2016」字符串

    「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...

  9. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. (转)source insight的使用方法逆天整理

    转载自:https://www.cnblogs.com/xunbu7/p/7067427.html A. why SI: 为什么要用Source Insight呢?因为她比完整的IDE要更快啊,比一般 ...

  2. jquery.form.js ajax提交上传文件

    项目中最近有用到表单提交,是带有图片上传的表单录入,需要ajax异步提交,网上找了好多例子都是只能提交上传字段一个信息的,这里整理一下.表单里有普通文本信息字段也有图片上传字段. 1.jsp代码--引 ...

  3. pageObject+selenium

    新发现的设计模式,很好用. 参考:https://www.cnblogs.com/xiaofeifei-wang/p/6733753.html

  4. java静态变量和final关键字

    静态变量其实就是全局变量 静态方法不需要实例化对象,直接可以调用. public class StaticVariable { public static int num1=20; public vo ...

  5. aliyun centos7 挂载云盘

    买了云盘,在哪里放着,也没有用到,今天把她挂上去吧! 1.查看SSD云盘sudo fdisk -l 可以看到SSD系统已经识别为/dev/vdb 2.格式化云盘sudo mkfs.ext4 /dev/ ...

  6. keepalived初次安装体验

    keepalived主要有两大功能,一个是LB,一个是VRRP+failover,其中LB功能和LVS的功能类似,都是通过在LB上配置RS,监控RS的状态,将从client来的请求发送给对应算法的RS ...

  7. vue(基础二)_组件,过滤器,具名插槽

    一.前言 主要包括:  1.组件(全局组件和局部组件)                     2.父组件和子组件之间的通信(单层)                     3.插槽和具名插槽     ...

  8. opencv: 基本知识(二);

    1.cvArr* 与 cv::Mat之间的转换; cv::Mat ---- > cvArr* cv::Mat img; IplImage temp = IplImage(img); cvArr ...

  9. JS_一些小方法总结

    1.js中onclick事件同时调用两个方法 用分号隔开即可,比如 <input type="button" onclick="a();b();" val ...

  10. css3 transition和animation的区别与联系

    1. transition 一定时间之内,一组css属性变换到另一组属性的动画展示过程. 属性: transition-property:动画展示哪些属性,可以使用all关键字: transition ...