。◕‿◕。TMD

TimeLimit: 2000/1000 MS (Java/Others)  MenoryLimit: 32768/32768 K (Java/Others)
64-bit integer IO format:%I64d
Problem Description
  LH Boy ,别看他平时TMD(挺萌的),到处卖萌,疯疯癫癫的,然而,他却是一位常年混迹在各大Math论坛上,帮助无数误入迷途的Mather解决了各种难题的大神,然而,最近他遇到了一个很蛋疼的问题。这是一个来自论坛上Mather的难题: 
  设X∈[1~N],存在多少个X使得GCD(X,N)>=M,统计符合要求X的个数。
Input
  第一行输入一个整数 T( T<=100) ,表示有T组测试数据。 
  接下来有T组测试数据,每一组测试数据输入一行。每一行输入两个整数 N和 M (2<=N<=1000000000, 1<=M<=N)。
Output
  对于每一组测试案例,在下一行中输出答案、
SampleInput
3
1 1
10 2
10000 72
SampleOutput
1
6
260
题目大意: 
  第一行输入T,表示有T组数据。然后每一行输入N和M,分别表示所要求数的范围为1~N,比较值为M。
 题目意思很简单,就是求解,在数的范围内X∈[1~N],存在多少个X使得GCD(X,N)>=M,统计X符合要求的个数。
 用膝盖骨想想也知道,如果直接暴力遍历N次,每次操作的复杂度高达10^9,肯定会超时的。常规的方法肯定不行。
 
 ①首先,补充一下关于GCD()的一些基础知识。
  1,如果GCD(a,b)=c,则可以知道GCD(a/c,b/c)=1;(  GCD(a,b)=c  <=>  GCD(a/c,b/c)=1  )
  2,设GCD(a,b)=c,如果想要GCD(a,b*d)=c,用①_1可知,
    只需满足GCD(a/c,(b/c)*d)=1即可(这个限制既为,满足最大公约数的要求).
 
 ②然后,我们所要求的是GCD(X,N)>=M,也就是说我们要求一个GCD(X,N)=Z,的数,
  1,如果M==1,则可以知道在[1,N]中任意数X的GCD(X,N)>=1,所以符合要求的个数为N。
  2,如果M>1,则表示我们需要找一个GCD(X,N)>1的数。这样我们就知道X肯定会是N的除了1以外的约数、
  因为,X只有是N除了1以外的约数,才可能会有GCD(X,N)>1存在。而且,GCD(N,X)=X;(约数嘛,你懂得~)
 
 ③再者,我们需要统计的数符合要求的X的个数呢?
  1,正如②_2可以知道GCD(N,X)=X,能够使得GCD()=X的数不一定只有X本身,说的正确点的应该是GCD(N,X*q)=X,
  只需要计算1~N中有多少个(X*q)即可。但是,q是有受限制的,需要满足上述①_2的要求。
         (比如:GCD(15,5)=5,GCD(15,5*3)=15;)
  2,由①_2可知,要使得GCD(N,X*q)=X,需要满足GCD(N/X,q)=1.也就是统计1~N/X中有多少个数与N/X互质。
   是不是觉得有点熟悉了的?=>求1~N中,有多少个与N互质的数,不就是欧拉函数嘛,SUM+=Eular(N/X);
 ④最后,如何不重复的统计其公约数为符合条件X的数呢?
  其实,你每次用欧拉函数统计出来的那些数,都是唯一的,如上面③_2所说的,q是有受限制的,因为这个限制,使得所求出的个数都为不重复的、所以,只需要统计N的符合要求的约数Xi,SUM+=Eular(N/Xi),既为答案、
 #include <iostream>
 #include <stdio.h>
 #include <string.h>
 using namespace std;
 int Eular(int N)
 {
     ,i;
     ;i*i<=N;i++)
     {
         )
         {
             N/=i;sign*=i-;
             )
             {N/=i;sign*=i;}
         }
     }
     )
     sign*=N-;
     return sign;
 }
 int main()
 {
     int A,B,T,i,sign;
     scanf("%d",&T);
     while(T--)
     {
         scanf("%d%d",&A,&B);
         ,sign=;i*i<=A;i++)/*分解约数*/
            )       /*分解约数,同时判断两边*/
            {           /*如果为平方数则主需要判断一次*/
                 if(i>=B)
                     sign+=Eular(A/i);
                 if((A/i)!=i&&(A/i)>=B)/*判断是否为平方数*/
                     sign+=Eular(i);
            }
         printf("%d\n",sign);/*输出答案*/
     }
     ;
 }

。◕‿◕。TMD的更多相关文章

  1. T^TOJ - 1251 - 。◕‿◕。TMD - 欧拉函数 - 质因数分解

    http://www.fjutacm.com/Problem.jsp?pid=1251 想了很久,一开始居然还直接枚举因子d,计算重复了. 首先你要找与n的最大公因子大于m的x的个数. \[\sum\ ...

  2. 爆料喽!!!开源日志库Logger的使用秘籍

    日志对于开发来说是非常重要的,不管是调试数据查看.bug问题追踪定位.数据信息收集统计,日常工作运行维护等等,都大量的使用到.今天介绍著名开源日志库Logger的使用,库的地址:https://git ...

  3. sublime text 3 如何安装 package control

    sublime text3 是个很好的编辑工具,前端程序员觉得她很好,我是在一次视频中看到她能帮助自动完成很多快捷的操作. 为什么安装? 如果想要给sublime text 中安装别的插件(这里称呼为 ...

  4. html 符号大全

    ░ ▒ ▬ ♦ ◊ ◦ ♠ ♣ ▣ ۰•● ❤ ●•۰► ◄ ▧ ▨ ♨ ◐ ◑ ↔ ↕ ▪ ▫ ☼ ♦ ♧♡♂♀♠♣♥❤☜☞☎☏⊙◎ ☺☻☼▧▨♨◐◑↔↕▪ ▒ ◊◦▣▤▥ ▦▩◘ ◈◇♬♪♩♭♪の ...

  5. iOS:特殊符号大全

    特殊符号大全分享给大家,直接复制粘贴就可以使用了! ░ ▒ ▬ ♦ ◊ ◦ ♠ ♣ ▣ ۰•● ❤ ●•۰ ► ◄ ▧ ▨ ♨ ◐ ◑ ↔ ↕ ▪ ▫ ☼ ♦ ♧♡♂♀♠♣♥❤☜☞☎☏⊙◎ ☺☻☼▧▨ ...

  6. 青少年如何使用 Python 开始游戏开发

    这是一篇由教程团队成员Julian Meyer发表的文章,一个12岁的python开发人员.你可以在Google+和Twitter上找到他. 你可曾想过如何创建视频游戏吗?它不像你想象的那么复杂! 在 ...

  7. WPF 多项选择下拉菜单

    背景 项目中有一个多项选择筛选的功能, 由于筛选条件太多, 用户又习惯在平板上进行操作, 所以要求我们把checkbox 放到一个combobox里面, 然后checkbox的选项要在combobox ...

  8. Ajax异步操作集合啦(阿贾克斯)

    /* * Ajax的核心操作对象是xmlHttpRequest * 简化操作步骤:实例化一个xmlHttpRequest对象 ==> 发送请求 ==> 接受响应 ==> 执行回调 * ...

  9. COJ 3016 WZJ的图论问题

    传送门:http://oj.cnuschool.org.cn/oj/home/problem.htm?problemID=1046 试题描述: WZJ又有一个问题想问问大家.WZJ用数据生成器生成了一 ...

随机推荐

  1. KMP 算法 学习 整理

    我自己整理的KMP算法的PDF文件:http://pan.baidu.com/s/1o8yKIi2提取密码:8291 别的就不多说啥了,感谢来自海子 博客园的 资料--

  2. 第一百二十三节,JavaScript错误处理与调试

    JavaScript错误处理与调试 学习要点: 1.浏览器错误报告 2.错误处理 3.错误事件 4.错误处理策略 5.调试技术 6.调试工具 JavaScript在错误处理调试上一直是它的软肋,如果脚 ...

  3. spring 四种依赖注入方式以及注解注入方式

    平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程 ...

  4. linux安装GraphicsMagick

    下载GraphicsMagick-1.3.21.tar.gz 解压:tar -zxvf GraphicsMagick-1.3.21.tar.gz cd /usr/local/GraphicsMagic ...

  5. POJ 3253 Fence Repair (优先队列)

    POJ 3253 Fence Repair (优先队列) Farmer John wants to repair a small length of the fence around the past ...

  6. servlet就实现在线用户表

    在学习servlet的过程中,学习了如何用servlet实现在线用户表. 只有服务器处于开机状态才会有在线用户表的存在,在服务器关机的情况下自然就不存在在线用户表的说法:所以,楼主认为在线用户表的信息 ...

  7. re2c实例

    #include <stdio.h> #include "demo_def.h" #define T_BEGIN 0 #define T_NUMBER 1 #defin ...

  8. lvs 会话保持(转发)

    lvs & keepalived的tcp 长连接的问题解决办法 虽然应用keepalived搞定了后端服务负载均衡和高可用性问题,但是在具体应用的时候,还是要注意很多问题.很多应用都用tcp或 ...

  9. sql优化方式-转载

    我始终认为,一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优的任务,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意,进行有效工作才能达到的.所以我希望按照软件生命周期的不同阶段来 ...

  10. doT.js实例详解

    doT.js详细介绍 doT.js特点是快,小,无依赖其他插件.官网:http://olado.github.iodoT.js详细使用介绍 使用方法:{{= }} for interpolation{ ...