ZOJ-3652-Maze(BFS)
Celica is a brave person and believer of a God in the bright side. He always fights against the monsters that endanger humans. One day, he is asked to go through a maze to do a important task.
The maze is a rectangle of n*m, and Celica is at (x1,
y1) at the beginning while he needs to go to (x2, y2). And Celica has a Mobility of
l. When he moves a step the movility will decreased by 1. If his mobility equals to 0, he can't move anymore in this turn. And no matter how much mobility Celica uses in one turn, his movility will become
l again in the next turn. And a step means move from one lattice to another lattice that has an adjacent edge.
However, due to the world's rule and the power of magic, there is something called Dominance in the maze. Some lattices may be dominated by some monsters and if Celica goes into these lattices, his mobility will be reduced to 0 at once by the monster's magic
power. And monsters have strong "Domain awareness" so one lattice won't be dominated by more than one monster.
But luckily, Celica gets a strong power from his God so that he can kill this monsters easily. If Celica goes into a lattice which a monster stands on, he can kill the monster without anytime. If a monsters is killed, the lattices it dominates will no longer
be dominated by anyone(or we can say they are dominated by Celica) and these lattices will obey the rule of mobility that normal lattices obey.
As for the task is so important that Celica wants to uses the least turn to go to (x2,
y2). Please find out the answer.
PS1: It doesn't matter if Celica doesn't kill all the monsters in the maze because he can do it after the task and a monster may appear at a lattice that is not dominated by it, even a lattice that is not dominated by any monsters.
PS2: We define (1,1) as the top left corner. And monsters won't move.
PS3: No matter which lattice Celia gets in, the change of mobility happens first.
PS4: We promise that there is no two monsters have same position and no monster will appear at the start point of Celica.
Input
The first contains three integers, n, m, l.(1≤n,
m≤50, 1≤l≤10)
Then there follows n lines and each line contains m integers. The
j-th integer p in the line i describe the lattice in the
i line and j row. If p euqals to -1, it means you can't get into it. If
p euqals to 0, it means the lattice is not dominated by any monster. If
p is larger than 0, it means it is dominated by the p-th monster.
And then in the n+2 line, there is an integer k(0≤k≤5) which means the number of monster.
Then there follows k lines. The i-th line has two integers mean the position of the
i-th monster.
At last, in the n+k+3 lines, there is four integers x1,
y1, x2, y2.
Output
If Celica can't get to the (x2, y2), output "We need God's help!", or output the least turn Celica needs.
Sample Input
5 5 4
2 2 2 1 0
-1 2 2 -1 1
2 2 2 1 1
1 1 1 1 0
1 2 2 -1 0
2
4 2
1 1
5 1 1 5
5 5 4
1 1 1 1 1
1 2 2 -1 -1
2 2 -1 2 2
-1 -1 2 2 2
2 2 2 2 2
2
2 2
1 2
1 1 5 5
Sample Output
4
We need God's help!
Hit
In the first case, Celica goes to (4,1) in turn 1. Then he goes to (4,2) in turn 2. After he gets (4,2), kill the monster 1. He goes through (4,3)->(4,4)>(3,4)->(3,5) in turn 3. At last he goes (2,5)->(1,5) in turn 4.
思路:水搜索,注意细节即可。
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std; struct S{
int x,y,step,state;
}t,qt; int mp[50][50],monx[10],mony[10],nxt[4][2]={{1,0},{0,1},{-1,0},{0,-1}},n,m,l,k;
bool v[1<<5][50][50],vis[1<<5][50][50]; queue<S>que,q; void span(int x,int y,int step,int state)
{
int i,j,temp; for(int lxd=0;lxd<(1<<k);lxd++) for(i=0;i<n;i++) for(j=0;j<m;j++) v[lxd][i][j]=0; qt.x=x;
qt.y=y;
qt.step=l;
qt.state=state; q.push(qt); while(!q.empty())
{
qt=q.front();
q.pop(); temp=qt.state; for(i=0;i<4;i++)
{
qt.x+=nxt[i][0];
qt.y+=nxt[i][1]; qt.state=temp; if(qt.x>=0 && qt.x<n && qt.y>=0 && qt.y<m && mp[qt.x][qt.y]>=0 && !v[qt.state][qt.x][qt.y])
{
v[qt.state][qt.x][qt.y]=1; for(j=0;j<k;j++) if(qt.x==monx[j] && qt.y==mony[j]) break; if(j==k)//没有妖怪
{
if(mp[qt.x][qt.y]==0)
{
qt.step--;
if(qt.step>0) q.push(qt);
qt.step++; t.x=qt.x;
t.y=qt.y;
t.step=step+1;
t.state=qt.state; if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
else
{
if((1<<mp[qt.x][qt.y]-1)&qt.state)
{
qt.step--;
if(qt.step>0) q.push(qt);
qt.step++; t.x=qt.x;
t.y=qt.y;
t.step=step+1;
t.state=qt.state; if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
else
{
t.x=qt.x;
t.y=qt.y;
t.step=step+1;
t.state=qt.state; if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
}
}
else//有妖怪
{
if(mp[qt.x][qt.y]==0)
{
qt.step--;
qt.state|=(1<<j);
v[qt.state][qt.x][qt.y]=1;
if(qt.step>0) q.push(qt);
qt.step++; t.x=qt.x;
t.y=qt.y;
t.step=step+1;
t.state=(qt.state|(1<<j)); if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
else
{
if((1<<mp[qt.x][qt.y]-1)&qt.state)
{
qt.step--;
qt.state|=(1<<j);
v[qt.state][qt.x][qt.y]=1;
if(qt.step>0) q.push(qt);
qt.step++; t.x=qt.x;
t.y=qt.y;
t.step=step+1;
t.state=(qt.state|(1<<j)); if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
else
{
t.x=qt.x;
t.y=qt.y;
t.step=step+1;
v[qt.state][qt.x][qt.y]=1;
t.state=(qt.state|(1<<j)); if(!vis[t.state][t.x][t.y])
{
vis[t.state][t.x][t.y]=1;
que.push(t);
}
}
}
}
} qt.x-=nxt[i][0];
qt.y-=nxt[i][1];
}
}
} int main()
{
int i,j,x1,x2,y1,y2; while(~scanf("%d%d%d",&n,&m,&l))
{
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
scanf("%d",&mp[i][j]);
}
} scanf("%d",&k); for(i=0;i<k;i++)
{
scanf("%d%d",&monx[i],&mony[i]); monx[i]--;
mony[i]--;
} scanf("%d%d%d%d",&x1,&y1,&x2,&y2); x1--;
x2--;
y1--;
y2--; while(!que.empty()) que.pop(); for(int lxd=0;lxd<(1<<k);lxd++) for(i=0;i<n;i++) for(j=0;j<m;j++) vis[lxd][i][j]=0; t.x=x1;
t.y=y1;
t.step=0;
t.state=0; vis[0][t.x][t.y]=1; que.push(t); while(!que.empty())
{
t=que.front(); if(t.x==x2 && t.y==y2)
{
printf("%d\n",t.step);
break;
} que.pop(); span(t.x,t.y,t.step,t.state);
} if(que.empty()) puts("We need God's help!");
}
}
版权声明:本文博客原创文章。博客,未经同意,不得转载。
ZOJ-3652-Maze(BFS)的更多相关文章
- ZOJ 3652 Maze 模拟,bfs,读题 难度:2
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4842 要注意题目中两点: 1.在踏入妖怪控制的区域那一刹那,先减行动力,然后才 ...
- zoj 3652 Maze
Maze Time Limit: 2 Seconds Memory Limit: 65536 KB Celica is a brave person and believer of a Go ...
- poj 3026 Borg Maze (BFS + Prim)
http://poj.org/problem?id=3026 Borg Maze Time Limit:1000MS Memory Limit:65536KB 64bit IO For ...
- POJ3026——Borg Maze(BFS+最小生成树)
Borg Maze DescriptionThe Borg is an immensely powerful race of enhanced humanoids from the delta qua ...
- POJ 3026 Borg Maze bfs+Kruskal
题目链接:http://poj.org/problem?id=3026 感觉英语比题目本身难,其实就是个最小生成树,不过要先bfs算出任意两点的权值. #include <stdio.h> ...
- Borg Maze(bfs+prim)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6971 Accepted: 2345 Description The B ...
- LightOJ 1337 F - The Crystal Maze (bfs)
Description You are in a plane and you are about to be dropped with a parasuit in a crystal maze. As ...
- POJ3026 Borg Maze(bfs求边+最小生成树)
Description The Borg is an immensely powerful race of enhanced humanoids from the delta quadrant of ...
- CodeForces - 377A Maze BFS逆思维
Maze Pavel loves grid mazes. A grid maze is an n × m rectangle maze where each cell is either empty, ...
- POJ - 3026 Borg Maze BFS加最小生成树
Borg Maze 题意: 题目我一开始一直读不懂.有一个会分身的人,要在一个地图中踩到所有的A,这个人可以在出发地或者A点任意分身,问最少要走几步,这个人可以踩遍地图中所有的A点. 思路: 感觉就算 ...
随机推荐
- Cnblogs API
http://wcf.open.cnblogs.com/news/help http://wcf.open.cnblogs.com/blog/help/ 不支持用户登陆
- 同一路由器不同vlan之间的通信(一)
还是废话不多说,第一步,看拓扑图. 先把pc上的ip都配好.開始设置 switch0: >en >conf t >vlan 2 >exit >int fa 0/1 > ...
- HTML学习_01
html总结 html是一门标记语言,也就是不经过编译就能直接执行的语言,不像是c/c++/java等等须要转换成二进制码, html是一门最主要的学科,提供了一个框架,提供了各种标签和规则,使得语言 ...
- 轮播图片 高效图片轮播,两个imageView实现
该轮播框架的优势: 文件少,代码简洁 不依赖任何其他第三方库,耦合度低 同时支持本地图片及网络图片 可修改分页控件位置,显示或隐藏 自定义分页控件的图片,就是这么个性 自带图片缓存,一次加载,永久使用 ...
- Eclipse工具的问题
1 Eclipse采用ctrl抄 粘贴很卡 Eclipse -- Windows->Preferences->General->Editors->Text Editors-&g ...
- 采用ACE登录设施(一)HelloWorld
(1)开始使用日志设施 使用日志设施,总是要包括头文件: #include "ace/Log_Msg.h" ACE日志的Hello World #ifdef _DEBUG #pra ...
- 桥模式设计模式进入Bridge
Abstraction:抽象部分的父类,定义须要实现的接口. 维护对实现部分的引用,从而把实现桥接到Implementor中去 Implementor:实现部分的接口 RefinedAbstracti ...
- C# WinForm多线程(三)Control.Invoke
下面我们就把在Windows Form软件中使用Invoke时的多线程要注意的问题给大家做一个介绍. 首先,什么样的操作需要考虑使用多线程?总的一条就是,负责与用户交互的线程(以下简称为UI线程)应该 ...
- canvas绘制百分比圆环进度条
开发项目,PM会跟踪项目进度:完成某个事情,也可以设置一个完成的进度. 这里用canvas绘制一个简单百分比圆环进度条. 看下效果: 1. 动画方式 2. 静默方式 // 贴上代码,仅供参考 ...
- 再谈Hibernate级联删除——JPA下的Hibernate实现一对多级联删除CascadeType.DELETE_ORPHAN
声明: 1.本文系原创,非抄袭或转载过来的. 2.本文论点都亲手做过实验论证. 3.本文所讲的Hibernate配置都基于注解的方式,hbm语法未提供. 非常多人对持久层概念搞不清JPA.Hibern ...