T了一版....是因为我找质因数的姿势不对...

考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了.

但是我们可以做的更好.

注意到h(n) = ∑ d * phi(n / d) (d | n) 是狄利克雷卷积的形式, 而且f(x) = x 和 f(x) = phi(x) 都是积性函数, 所以答案h(x) 也是积性函数.

所以h(x) = Π h(p^k) (p 是 x 的质因数)

由phi(p^k) = p^k - p^(k-1), h(p^k) 很好求. 化简一下得到 h(p^k) = (k + 1) * p^k - k * p^(k - 1)

--------------------------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
 
int main() {
ll n, ans = 1, cnt , h;
cin >> n;
for(ll p = 2; p * p <= n; p++) if(n % p == 0) {
cnt = 0; h = 1;
for(; n % p == 0; n /= p, h *= p) cnt++;
ans *= (cnt + 1) * h - cnt * h / p;
}
if(n != 1) ans *= 2 * n - 1;
cout << ans << "\n";
return 0;
}

--------------------------------------------------------------------------------------

2705: [SDOI2012]Longge的问题

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 1508  Solved: 937
[Submit][Status][Discuss]

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

HINT

【数据范围】

对于60%的数据,0<N<=2^16。

对于100%的数据,0<N<=2^32。

Source

BZOJ 2705: [SDOI2012]Longge的问题( 数论 )的更多相关文章

  1. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  2. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  4. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  6. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  7. bzoj 2705: [SDOI2012]Longge的问题——欧拉定理

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  8. BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...

  9. [bzoj 2705][SDOI2012]Longge的问题(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...

随机推荐

  1. openstack、kvm CentOS升级内核

    openstack平台需要使用各种Linux发行版镜像,其制作方法主要有两种,要么是基于各大Linux发行版ISO光盘手动制作,要么是使用官方提供的制作好镜像进行修改 问题 FATAL: Module ...

  2. [LeetCode]题解(python):066-Plus One

    题目来源: https://leetcode.com/problems/plus-one/ 题意分析: 给定一个数组,将数加一,返回新的数组.比如[9,9],返回[1,0,0]. 题目思路: 这道题目 ...

  3. Winform 绘制圆形的图片

    string filename = "icon.png";//如果不是png类型,须转换 System.Drawing.Bitmap bitmap = new System.Dra ...

  4. 转: seajs手册与文档之 -- 快速参考 ( ~~useful )

    目录 快速参考 seajs.use seajs.config define require require.async exports module.exports 快速参考 该页面列举了 SeaJS ...

  5. 转:.Net程序员学习Linux最简单的方法

    有很多关于Linux的书籍,博客.大多数都会比较“粗暴“的将一大堆的命令塞给读者,从而使很多.NET程序员望而却步.未入其门就路过了. 所以我设想用一种更为平滑的学习方式, 就是在学习命令时,先用纯语 ...

  6. elk 搭建

    elk 平台搭建: ELK平台搭建 系统环境 System: Centos release 6.7 (Final) ElasticSearch: 2.1.0 Logstash: 2.1.1 Kiban ...

  7. ThinkPHP 3.1.2 模板中的基本语法<2>

    本节课大纲: 一.导入CSS和JS文件 1.css link js scr <link rel='stylesheet' type='text/css' href='__PUBLIC__/Css ...

  8. 解读Google分布式锁服务

    解读Google分布式锁服务  背景介绍 在2010年4月,Google的网页索引更新实现了实时更新,在今年的OSDI大会上,Google首次公布了有关这一技术的论文. 在此之前,Google的索引更 ...

  9. vc 国际化的资源文件处理

    MS Windows操作系统是一个世界上广泛使用的操作系统,对于不同语种的国家MS Windows有相应语种的版本.在不同语种的Windows平台上应该运行相应语种的应用程序.也就是说程序的用户界面( ...

  10. [转]数位dp小记

    转载自:http://blog.csdn.net/guognib/article/details/25472879 参考: http://www.cnblogs.com/jffifa/archive/ ...