T了一版....是因为我找质因数的姿势不对...

考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了.

但是我们可以做的更好.

注意到h(n) = ∑ d * phi(n / d) (d | n) 是狄利克雷卷积的形式, 而且f(x) = x 和 f(x) = phi(x) 都是积性函数, 所以答案h(x) 也是积性函数.

所以h(x) = Π h(p^k) (p 是 x 的质因数)

由phi(p^k) = p^k - p^(k-1), h(p^k) 很好求. 化简一下得到 h(p^k) = (k + 1) * p^k - k * p^(k - 1)

--------------------------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
 
int main() {
ll n, ans = 1, cnt , h;
cin >> n;
for(ll p = 2; p * p <= n; p++) if(n % p == 0) {
cnt = 0; h = 1;
for(; n % p == 0; n /= p, h *= p) cnt++;
ans *= (cnt + 1) * h - cnt * h / p;
}
if(n != 1) ans *= 2 * n - 1;
cout << ans << "\n";
return 0;
}

--------------------------------------------------------------------------------------

2705: [SDOI2012]Longge的问题

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 1508  Solved: 937
[Submit][Status][Discuss]

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

HINT

【数据范围】

对于60%的数据,0<N<=2^16。

对于100%的数据,0<N<=2^32。

Source

BZOJ 2705: [SDOI2012]Longge的问题( 数论 )的更多相关文章

  1. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  2. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  4. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  6. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  7. bzoj 2705: [SDOI2012]Longge的问题——欧拉定理

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  8. BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...

  9. [bzoj 2705][SDOI2012]Longge的问题(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...

随机推荐

  1. 让正则表达式变简单(PythonVerbalExpressions)

    一.安装pip install VerbalExpressions二.导入from verbalexpressions import VerEx三.示例 使用案例一: 测试URL是否有效 from v ...

  2. Django forms 关于select和checkbox设置初始选中值及让前端选中指定值

    Django的forms和models一样很牛逼.他有两种功能,一是生成form表单,还有就是form表单的验证. 这里主要说一下生成form表单时经常用到的需要设置 初始值 / 默认值 的情况. 1 ...

  3. 13. Roman to Integer

    Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 t ...

  4. C语言之ASCII码

    ASCII码 ASCII码值在65~90之间,为大写字母.ASCII码值在97~122之间,为小写字母.ASCII码值在48~57之间,为数字.ASCII码值不在上述3个范围内,为特殊字符.

  5. 关于java中强制转换

    在百度上遇到一个问题,描述如下: 在java中,定义两个变量 byte x = (byte) 128; byte y = (byte)-129; 输出后,为什么结果是-128和128? 借此机会,自己 ...

  6. ASP.NET MVC3 Razor视图引擎-基础语法

    I:ASP.NET MVC3在Visual Studio 2010中的变化 在VS2010中新建一个MVC3项目可以看出与以往的MVC2发生了很明显的变化. 1.ASP.NET MVC3必要的运行环境 ...

  7. Qt技巧:Win7下打包发布Qt程序(解释的比较清楚,把exe和dll伪装合并成一个文件)

    转自:http://www.stardrad.com/blog/qt-5%E7%A8%8B%E5%BA%8F%E5%9C%A8windows%E4%B8%8A%E7%9A%84%E5%8F%91%E5 ...

  8. perl学习(5) 输入和输出

    1.1. 从标准输入设备输入 <STDIN> 行输入操作在到达文件的结尾时将返回undef,在while循环的条件中不能使用chomp: while (defined($line = &l ...

  9. Java学习之开篇—个人随想

    现在大三上学期了,家里希望考研,不然觉得我这学校不好找工作,我自己觉得工作还是靠自己,学校就像给人第一眼感觉那样,虽然重要但也只会吸引HR多看两眼,真正留得住HR的还是要有拿的出手的技能. 当初凭着对 ...

  10. MFC基础类源码CPP实现文件

    WinMain.CPP---->AfxWinMain()  //近似可认为是WinMain()函数的入口 VIEWCORE.CPP---->CView DOCCORE.CPP----> ...