最近在Linux服务器上配置项目,项目需要使用GPU版本的pytorch和TensorFlow,而且该项目内会同时使用TensorFlow的GPU和CPU。

  在服务器上装环境,如果重新开始,就需要下载很多依赖包,而且如果直接在系统上安装包,可能会和服务器上的其他包发生冲突,因此使用Anaconda创建虚拟环境来管理项目的依赖包。Anaconda的安装可以去清华大学的镜像下载,速度比较快,选择对应的版本就可以了  https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 。我需要下载python3.6对应的Anaconda可以对照下面这张图片来查看,选择Anaconda3-5.2.0版本就可以了。(但是其实我下载成了anaconda2,不过并不影响后续使用)

  Anaconda下载之后会在~/.bashrc中添加一条环境变量。如果首次运行conda命令找不到,就source ~/.bashrc。

  配置好Anaconda后,如果要创建虚拟环境,重新下载包也需要很麻烦的操作,而且需要对照以前的项目进行一一下载。这太捞了,我们考虑直接将本地项目的anaconda环境打包好上传到服务器上,就可以使用本地的虚拟环境了。具体做法是,首先到本地的Anaconda环境目录下,我的是/home/timber/anaconda2/envs ,这个目录下就是用户创建的anaconda环境。直接打包

tar -cvf name.tar your_env_name/

然后将这个文件用scp上传到服务器下的(anaconda2_dir)/envs下,

scp name.tar remote_username@remote_ip:anaconda_dir/envs

接着在服务器的anaconda的envs目录下解压name.tar

tar -xvf name.tar

环境就移植到服务器上了,可以在服务器上通过conda env list检验是否有我们刚移植的环境。

  本地安装的环境是cpu版本的pytorch和TensorFlow,首先将pytorch卸载

conda activate project #激活环境
conda uninstall pytorch

然后去清华大学的镜像下下载pytorch(因为官方下载超级慢)。需要首先配置清华大学镜像。

依次运行以下命令

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

上面三条是配置清华镜像源,下面一条是配置pytorch源。然后去到官网,选择你对应的pytorch版本,找到下载命令,比如,最新版本的Pytorch在cuda10下面的官方下载命令是

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

但是,不要用这条命令,由于添加了镜像源,我们去掉上面命令的-c pytorch,运行

conda install pytorch torchvision cudatoolkit=10.1

就可以用清华镜像下载了。如果要下载历史版本的pytorch,以1.0为例,就用

conda install pytorch==1.0 torchvision cudatoolkit=10.1 -c pytorch

安装好之后,torchvision不一定能配套使用,因为Torch已经更换了,所以可能会存在版本不一致的问题,卸载torchvision,然后下载对应版本的torchvision。

  出现的第一个问题是torchvision下没有totensor,重装0.2.0的torchvision。

  第二个问题是This application failed to start because it could not faind or load the Qt platform plugin "xcb" in "".

 Reinstalling the application may fix the problem.这个提示告诉我们在Qt平台插件中找不到XCB,提示我们重装,那我们就重装呗,重装pyqt

conda uninstall pyqt
conda uninstall qt
conda install pyqt

  我的项目使用了GPU版本的Tensorflow,需要装GPU版本的TensorFlow。

  这里还有个问题是,人脸识别和车辆检测都使用了TensorFlow,一个是CPU版本,一个是GPU版本,会有冲突吗。TensorFlow的GPU版本是可以跑cpu的,所以先把之前的TensorFlow卸载掉。下载了GPU版本的

conda install tensorflow-gpu==1.12.0

但是这里同时下载了cuda的9.0的toolkit,之前下载torch的时候使用了cuda10的toolkit,不知道会怎么样。测试之后发现没有冲突。

  现在在这个项目下,有一个GPU的版本,有一个cpu的版本,同时也有两套对应的anaconda环境与之对应,当执行GPU版本时,需要切换到anaconda的GPU环境。这种切换可以是在命令行中

conda activate gpu

也可以是在pycharm中进行project intepreter设置,选中anaconda/envs/project/bin/python3.6,就是选中了该环境。

  至此,还剩最后一个问题,GPU版本的TensorFlow是默认使用gpu版本,但是GPU版本的项目有一块是需要使用cpu版本的tensorflow的,那么应该如何设置?

Linux服务器配置GPU版本的pytorch Torchvision TensorFlow的更多相关文章

  1. tensorflow 一些好的blog链接和tensorflow gpu版本安装

    pading :SAME,VALID 区别  http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法 ...

  2. 【转】Ubuntu 16.04安装配置TensorFlow GPU版本

    之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...

  3. 学习笔记TF046:TensoFlow开发环境,Mac、Ubuntu/Linux、Windows,CPU版本、GPU版本

    下载TensorFlow https://github.com/tensorflow/tensorflow/tree/v1.1.0 .Tags选择版本,下载解压. pip安装.pip,Python包管 ...

  4. 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)

    一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...

  5. 说说Windows7 64bits下安装TensorFlow GPU版本会遇到的一些坑

    不多说,直接上干货! 再写博文,回顾在Windows7上安装TensorFlow-GPU的一路坑 Windows7上安装TensorFlow的GPU版本后记 欢迎大家,加入我的微信公众号:大数据躺过的 ...

  6. Windows7 64bits下安装TensorFlow GPU版本(图文详解)

    不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先 ...

  7. Ubuntu 14.04 64bit 安装tensorflow(GPU版本)

    本博客主要用于在Ubuntu14.04 64bit 操作系统上搭建google开源的深度学习框架tensorflow. 0.安装CUDA和cuDNN 如果要安装GPU版本的tensorflow,就必须 ...

  8. 安装GPU版本的tensorflow填过的那些坑!---CUDA说再见!

    那些坑,那些说不出的痛! --------回首安装的过程,真的是填了一个坑又出现了一坑的感觉.记录下了算是自己的笔记也能给需要的人提供一点帮助. 1 写在前面的话 其实在装GPU版本的tensorfl ...

  9. Ubuntu 16安装GPU版本tensorflow

    pre { direction: ltr; color: rgb(0, 0, 0) } pre.western { font-family: "Liberation Mono", ...

随机推荐

  1. Python中将变量按行写入txt文本中

    案例一: 讲数组a 循环写入名称为2.txt的文档中 # -*-coding:utf8-*- import requests from lxml import etree a=[1,2,3,4,5,6 ...

  2. CSS中的定位体系

    一.概述     1.什么是定位体系     视觉格式化模型规定,定位体系共有三种             a.常规流(normal flow)             b.浮动(float)     ...

  3. 使用dlib自带的面向梯度直方图(HOG)和线性分类器方法来检测人脸

    之前使用opencv里面CascadeClassifier(级联分类器)来识别人脸, 下面使用dlib库来实现人脸识别. dlib是一个开源的库,它包含了很多内容有机器学习,图像处理,数值算法等等. ...

  4. 【SpringBoot MQ 系列】RabbitMq 核心知识点小结

    [MQ 系列]RabbitMq 核心知识点小结 以下内容,部分取材于官方教程,部分来源网络博主的分享,如有兴趣了解更多详细的知识点,可以在本文最后的文章列表中获取原地址 RabbitMQ 是一个基于 ...

  5. 自己封装的一个Ajax小框架

    在经历了Jsp实训的惨痛教训后,特意花了点时间学习Ajax,学完后自我感觉良好,于是写了如下一个小框架: /** * frameAjax * * 参数: * paramsObj: Json * req ...

  6. BZOJ 2653 middle (可持久化线段树+中位数+线段树维护最大子序和)

    题意: 左端点在[a,b],右端点在[c,d],求这个线段里中位数(上取整)最大值 思路: 对数组离散化,对每一个值建中位数的可持久化线段树(有重复也没事),就是对于root[i],大于等于i的值为1 ...

  7. DG参数 LOG_ARCHIVE_DEST_n

    DG参数 LOG_ARCHIVE_DEST_n This chapter provides reference information for the attributes of the LOG_AR ...

  8. win10系统下安装JDK1.8及配置环境变量的方法

    本次演示基于windows10操作系统,如果你是linux,请参考:https://www.yn2333.com/archives/linux上安装JDK8 1:下载安装包 地址:https://ww ...

  9. c++中的智能指针怎样释放连续的资源?

    以前学智能指针时有点想当然了,一直以为智能指针很智能,不管你让它管理的是单个资源还是连续的资源它都能正确的将资源释放,现在发现自己大错特错. 先看代码: #include <iostream&g ...

  10. javascript 完全正确的数据库indexedDB

    //indexedDB var dbName = 'whx', version = '1', dbTableName = 'bbg', request, db, conCls, updateKey, ...