http://acm.hdu.edu.cn/showproblem.php?pid=1203

Problem Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
 
Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000) 
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。 
输入的最后有两个0。
 
Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
 
 
Sample Input
10 3
4 0.1
4 0.2
5 0.3
0
0
Sample Output
44.0%

Hint

You should use printf("%%") to print a '%'.

 
题目要求求Speakless可能得到至少一份offer的最大概率,直接求不好求,但是可以求它的对立面即一个都不能得到的最小概率,这样就把问题转化为了dp问题。只是求的是最小值,最后用1-dp(min)就行了。
至少收到一份的概率 = 1 - 1份都收不到的概率 = 1 - Pk1*Pk2*……Pki。(ki表示他申请的学校)

解题思路:

由题意可知,我们需要找到最小的Pk1*Pk2*Pki。

联系到01背包问题,我们把钱数看做费用,概率看做价值。

则状态转移方程应该是dp[i]=min(dp[i],dp[i-c]*w) ,初始设所有的dp[i] = 1。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
int V,m;
int w[];
double v[];
double dp[];
int main()
{
while(scanf("%d%d",&V,&m)!=EOF)
{
if(V==&&m==) break;
for(int i=; i<=m; i++)
{
scanf("%d%lf",&w[i],&v[i]);
v[i]=-v[i];
}
for(int i=; i<=V; i++)
dp[i]=;
for(int i=; i<=m; i++)
{
for(int j=V; j>=w[i]; j--)
{
if(dp[j-w[i]]*v[i]<dp[j])
{
dp[j]=dp[j-w[i]]*v[i];
}
}
}
dp[V]=(-dp[V])*;
printf("%.1lf%%\n",dp[V]);
}
return ;
}

HDU1203:I NEED A OFFER!(01背包)的更多相关文章

  1. HDOJ 1203 I NEED A OFFER!(01背包)

    10397507 2014-03-25 23:30:21 Accepted 1203 0MS 480K 428 B C++ 泽泽 题目链接:http://acm.hdu.edu.cn/showprob ...

  2. hdu 1203 I NEED A OFFER (0-1背包)

    题意分析:0-1背包变形  递推公式:dp[i] = max(dp[i], 1-(1-dp[i-C])*(1-p)) /* I NEED A OFFER! Time Limit: 2000/1000 ...

  3. hdu1203I NEED A OFFER!(01背包)

    I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  4. HDU 1203 I NEED A OFFER! 01背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 解题思路:简单的01背包,用dp[i]表示花费不超过i时的最大可能性 状态转移方程 dp[i]= ...

  5. HDU 1203 I NEED A OFFER! 01背包 概率运算预处理。

    题目大意:中问题就不说了 ^—^~ 题目思路:从题目来看是很明显的01背包问题,被录取的概率记为v[],申请费用记为w[].但是我们可以预先做个处理,使问题解决起来更方便:v[]数组保留不被录取的概率 ...

  6. hdu1203 I NEED A OFFER!---概率DP(01背包)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1203 题目大意:Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材 ...

  7. HDU 1203 I NEED A OFFER!(01 背包DP)

    点我看题目 题意 : 中文题不详述. 思路 :类似于01背包的DP,就是放与不放的问题,不过这个要求概率,至少得到一份offer的反面就是一份也得不到,所以先求一份也得不到的概率,用1减掉就可以得到所 ...

  8. HDU1203_I NEED A OFFER!【01背包】

    I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU 1203 I NEED A OFFER!(01背包+简单概率知识)

    I NEED A OFFER! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

随机推荐

  1. numpy常用举例

    转自https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-1-np-attributes/ numpy 的属性: ndim: ...

  2. 【面试题】Java EE面试题

    第一部分:Servlet/JSP快速入门 1.      请列举至少6种javaEE技术,并简述其作用. 解析: javaEE是一系列的技术,主要包扩13种.对于开发人员来说,了解几种主要的技术是非常 ...

  3. C#设计模式--装饰器模式

    0.C#设计模式-简单工厂模式 1.C#设计模式--工厂方法模式 2.C#设计模式--抽象工厂模式 3.C#设计模式--单例模式 4.C#设计模式--建造者模式 5.C#设计模式--原型模式 6.C# ...

  4. 开发常见错误之 : Detected both log4j-over-slf4j.jar AND slf4j-log4j12.jar

    SLF4J: Detected both log4j-over-slf4j.jar AND slf4j-log4j12.jar on the class path, preempting StackO ...

  5. 基于Python的跨平台端口转发工具

    背景 使用lcx也好,nc也好,总是会被安全防护软件查杀,所以想着自己写一个.顺面学习一下,端口转发的原理. 端口转发的逻辑 端口转发的逻辑很简单开启两个scoket,一个绑定IP端口进行listen ...

  6. numpy中的reshape中参数为-1

    上篇文章中的reshape(-1,2),有的时候不明白为什么会有参数-1,可以通过查找文档中的reshape()去理解这个问题 根据Numpy文档(https://docs.scipy.org/doc ...

  7. poj1850Code

    Code Transmitting and memorizing information is a task that requires different coding systems for th ...

  8. matlab中norm函数的用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vecto ...

  9. MyISAM存储引擎

    每个MyISAM在磁盘上存储成三个文件.第一个文件的名字以表的名字开始,扩展名指出文件类型..frm文件存储表定义.数据文件的扩展名为.MYD (MYData).索引文件的扩展名是.MYI (MYIn ...

  10. Apple Pay的实现

    首先是搜到的大神写的全套知识点:http://www.jianshu.com/p/8d7b86f1d142 http://www.cnblogs.com/dashunzi/archive/2016/0 ...