正解:拓展欧拉定理

解题报告:

首先放上拓欧公式?

if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)
else ab≡ab mod φ(p) (mod p)

首先利用扩展欧拉定理。

    • 原式=2(剩余数%φ(p)+φ(p))
    • 而 剩余数% φ(p)又可以进行分解,所以这个过程可以用递归实现。
    • 注意边界条件:当p=1时,余数自然为0。

然后就最最最不用动脑子的思路啊,我们一路做下去做下去,一直膜膜膜膜膜%,总有一天φ(p)是1了然后此时mod一定是0就可以一路再返回回去,能理解趴?

好滴那就是这样,没了!

然后放个代码(哇我发现!我博客越来越简洁明了没废话了yeah!

#include<bits/stdc++.h>
using namespace std;
#define ll long long

ll prime[],ol[],tot;

inline ll read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}
inline ll poww(ll a,ll b,ll mod)
{
    ;
    while(b)
    {
        )t=t*a%mod;
        a=a*a%mod;
        b>>=;
    }
    return t;
}
void pre()
{
    ol[]=;
    ;i<=;i++)
    {
        ){prime[++tot]=i;ol[i]=i-;}
        ;j<=tot && i*prime[j]<=;j++)
        {
            ){ol[i*prime[j]]=ol[i]*prime[j];j=tot+;}
            );
        }
    }
}
ll dfs(ll x)
{
    );
    ,ol[x]+dfs(ol[x]),x);
}

int main()
{
    ll T=read();pre();
    while(T--)printf("%lld\n",dfs(read()));
    ;
}

(

自打脸说句废话

我觉得这题名字,好可爱啊x

然后题目描述也是,感觉是个很有趣的人出的题目呢

洛谷P4139 上帝与集合的正确用法 拓欧的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  5. [洛谷P4139]上帝与集合的正确用法

    题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...

  6. 【洛谷】P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的:  第一天,上帝创造了一个世界的基本元素,称做“元”.  第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  7. P4139 上帝与集合的正确用法

    本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...

  8. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  9. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

随机推荐

  1. PHP代码审计笔记--XSS

    跨站脚本攻击(Cross Site Scripting),为了不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS.Web程序代码中把用户提 ...

  2. WP8.1开发:简单天气预报应用(转)

    今天小梦给大家分享一个简单的天气预报应用源码:调用的是百度API.整个应用都没有什么难点.只是一个简单的网络请求和json数据处理.在WP8.1有小娜的情况下,天气预报应用还有意义吗?我认为还是有点意 ...

  3. Esper学习之十四:Pattern(一)

    1. Pattern Atoms and Pattern operatorsPattern是通过原子事件和操作符组合在一起构成模板.原子事件有3类,操作符有4类,具体如下: 原子事件:1). 普通事件 ...

  4. 【大数据系列】安装Ambari

    一.Ambari简介 The Apache Ambari project is aimed at making Hadoop management simpler by developing soft ...

  5. 【大数据系列】win10不借助Cygwin安装hadoop2.8

    一.下载安装包 解压安装包并创建data,name,tmp文件夹 二.修改配置文件 1.core-site.xml <?xml version="1.0" encoding= ...

  6. jsp连接数据库的乱码问题 servlet请求参数编码处理get post

    1.在所有需要读取数据的地方用下面的方式.同时jsp必须统一编码,如我都是UTF-8 String userName= new String(request.getParameter("us ...

  7. xmlWriter

    MemoryStream msXml = new MemoryStream(); XmlTextWriter xmlWriter = new XmlTextWriter(msXml, Encoding ...

  8. mac Intellij Idea Tmocat 启动报 Error running Tomcat: /conf/Catalina

    原因:主要是tomcat下Catalina目录没有权限导致,将其设置读写权限即可 如果在刚刚启动tomcat时出现以下问题:Error running Tomcat 8.5.31: Error cop ...

  9. LeetCode 9 Palindrome Number(回文数字判断)

    Long Time No See !   题目链接https://leetcode.com/problems/palindrome-number/?tab=Description   首先确定该数字的 ...

  10. PtH(hash传递攻击)原理探秘

    背景知识 Windows 横向渗透的两种方式 1.hash传递攻击,通过传递NTLM-Hash,登录机器,简称PtH: 2.ticket传递攻击,通过传递kerberos的ticket,登录机器,简称 ...