骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。

1、骨架提取

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。

morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。我们先来看Skeletonize()函数。

格式为:skimage.morphology.skeletonize(image)

输入和输出都是一幅二值图像。

例1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt #创建一个二值图像用于测试
image = np.zeros((400, 400)) #生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1 #生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
image[rs + i, cs] = 1 #生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0 #实施骨架算法
skeleton =morphology.skeletonize(image) #显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20) fig.tight_layout()
plt.show()

生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:

例2:利用系统自带的马图片进行骨架提取

from skimage import morphology,data,color
import matplotlib.pyplot as plt image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image) #显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20) fig.tight_layout()
plt.show()

medial_axis就是中轴的意思,利用中轴变换方法计算前景(1值)目标对象的宽度,格式为:

skimage.morphology.medial_axis(imagemask=Nonereturn_distance=False)

mask: 掩模。默认为None, 如果给定一个掩模,则在掩模内的像素值才执行骨架算法。

return_distance: bool型值,默认为False. 如果为True, 则除了返回骨架,还将距离变换值也同时返回。这里的距离指的是中轴线上的所有点与背景点的距离。

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt #编写一个函数,生成测试图像
def microstructure(l=256):
n = 5
x, y = np.ogrid[0:l, 0:l]
mask = np.zeros((l, l))
generator = np.random.RandomState(1)
points = l * generator.rand(2, n**2)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
return mask > mask.mean() data = microstructure(l=64) #生成测试图像 #计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True) #中轴上的点到背景像素点的距离
dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest')
ax2.contour(data, [0.5], colors='w') #显示轮廓线 fig.tight_layout()
plt.show()

2、分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。

分水岭算法可以和距离变换结合,寻找“汇水盆地”和“分水岭界限”,从而对图像进行分割。二值图像的距离变换就是每一个像素点到最近非零值像素点的距离,我们可以使用scipy包来计算距离变换。

在下面的例子中,需要将两个重叠的圆分开。我们先计算圆上的这些白色像素点到黑色背景像素点的距离变换,选出距离变换中的最大值作为初始标记点(如果是反色的话,则是取最小值),从这些标记点开始的两个汇水盆越集越大,最后相交于分山岭。从分山岭处断开,我们就得到了两个分离的圆。

例1:基于距离变换的分山岭图像分割

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature #创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2) #现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented") for ax in axes:
ax.axis('off') fig.tight_layout()
plt.show()

分水岭算法也可以和梯度相结合,来实现图像分割。一般梯度图像在边缘处有较高的像素值,而在其它地方则有较低的像素值,理想情况 下,分山岭恰好在边缘。因此,我们可以根据梯度来寻找分山岭。

例2:基于梯度的分水岭图像分割

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声 #将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0] gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented") for ax in axes:
ax.axis('off') fig.tight_layout()
plt.show()

python数字图像处理(19):骨架提取与分水岭算法的更多相关文章

  1. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法

    原文:Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法 前面章节中介绍了二值图像的形态学算法,这里讲一下灰度图的形态学算法,主要是公式,代码略. 1,膨胀算法 2,腐蚀算法 3 ...

  4. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  6. Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法

    原文:Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法  [函数名称]   高斯平滑滤波器      GaussFilter(WriteableBitmap src,int r ...

  7. Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法

    原文:Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法  [函数名称]   部分彩色保留函数       WriteableBitmap PartialcolorProcess ...

  8. Win8 Metro(C#)数字图像处理--2.51图像统计滤波算法

    原文:Win8 Metro(C#)数字图像处理--2.51图像统计滤波算法  [函数名称]   图像统计滤波   WriteableBitmap StatisticalFilter(Writeab ...

  9. Win8 Metro(C#)数字图像处理--2.44图像油画效果算法

    原文:Win8 Metro(C#)数字图像处理--2.44图像油画效果算法  [函数名称]   图像油画效果      OilpaintingProcess(WriteableBitmap src ...

随机推荐

  1. JAVA 8 Lambda表达式-Lambda Expressions

    Lambda表达式介绍 Lambda表达式是在java规范提案JSR 335中定义的,Java 8 中引入了Lambda表达式,并被认为是Java 8最大的新特性,Lambda表达式促进了函数式编程, ...

  2. SQL挑战——如何高效生成编码

    有这样一个需求:需要根据输入的编码(这个编码值来自于数据库的一个表)生成下一个编码,编码规则如下所示(我们暂且不关心这个逻辑是否合理,只关心如何实现): 1: 最小值为A0000, 最大值为ZZZZZ ...

  3. JQuery插件:遮罩+数据加载中。。。(特点:遮你想遮,罩你想罩)

    在很多项目中都会涉及到数据加载.数据加载有时可能会是2-3秒,为了给一个友好的提示,一般都会给一个[数据加载中...]的提示.今天就做了一个这样的提示框. 先去jQuery官网看看怎么写jQuery插 ...

  4. 【转载】MySQL启多个实例

    很多朋友都想在一台服务器上运行多个MySQL Instance,究竟怎么做呢?首先要明晰几个原理, 简称为mysqld读取my.cnf的顺序:第一搜,首先读取/etc/my.cnf,多实例这个配置文件 ...

  5. C#委托学习

    标签(空格分隔): C# 看Markdown效果支持的不大好. 买来<CLR Via C#>这本书很久了,一直也没有对其进行总结,看的非常凌乱,趁此机会好好总结一下,也算对C#学习的一个总 ...

  6. 总结eclipse中安装maven插件

    当自己越来越多的接触到开源项目时,发现大多数的开源项目都是用maven来够建的.并且在开发应用时,也越来越意识到maven的确会解决很多问题,如果你要了解maven,可以参考:Maven入门指南(一) ...

  7. 与POS机通信时的3DES(双倍长)加密解密

    项目中有个SocketServer要和移动便携POS机通信,POS开发商就告诉我们他们用的3DES(双倍长)加密,给了个Key.数据和结果,让我们实现. c#用TripleDESCryptoServi ...

  8. 烂泥:通过binlog恢复mysql备份之前的数据

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 上一篇文章,我们讲解了如何通过mysql的binlog日志恢复mysql数据库,文章连接为<烂泥:通过binlog恢复mysql数据库>.其 ...

  9. cookie实现自动登录

    有很多Web程序中第一次登录后,在一定时间内(如2个小时)再次访问同一个Web程序时就无需再次登录,而是直接进入程序的主界面(仅限于本机).实现这个功能关键就是服务端要识别客户的身份.而用Cookie ...

  10. rhel7端口开放和查询

    开启端口 firewall-cmd --zone=public --add-port=80/tcp --permanent 命令含义: --zone #作用域 --add-port=80/tcp #添 ...