用python实现逻辑回归
机器学习课程的一个实验,整理出来共享。
原理很简单,优化方法是用的梯度下降。后面有测试结果。
# coding=utf-8
from math import exp
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
def sigmoid(num):
'''
:param num: 待计算的x
:return: sigmoid之后的数值
'''
if type(num) == int or type(num) == float:
return 1.0 / (1 + exp(-1 * num))
else:
raise ValueError, 'only int or float data can compute sigmoid'
class logistic():
def __init__(self, x, y):
if type(x) == type(y) == list:
self.x = np.array(x)
self.y = np.array(y)
elif type(x) == type(y) == np.ndarray:
self.x = x
self.y = y
else:
raise ValueError, 'input data error'
def sigmoid(self, x):
'''
:param x: 输入向量
:return: 对输入向量整体进行simgoid计算后的向量结果
'''
s = np.frompyfunc(lambda x: sigmoid(x), 1, 1)
return s(x)
def train_with_punish(self, alpha, errors, punish=0.0001):
'''
:param alpha: alpha为学习速率
:param errors: 误差小于多少时停止迭代的阈值
:param punish: 惩罚系数
:param times: 最大迭代次数
:return:
'''
self.punish = punish
dimension = self.x.shape[1]
self.theta = np.random.random(dimension)
compute_error = 100000000
times = 0
while compute_error > errors:
res = np.dot(self.x, self.theta)
delta = self.sigmoid(res) - self.y
self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta # 带惩罚的梯度下降方法
compute_error = np.sum(delta)
times += 1
def predict(self, x):
'''
:param x: 给入新的未标注的向量
:return: 按照计算出的参数返回判定的类别
'''
x = np.array(x)
if self.sigmoid(np.dot(x, self.theta)) > 0.5:
return 1
else:
return 0
def test1():
'''
用来进行测试和画图,展现效果
:return:
'''
x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20))
x1 = []
y1 = []
x2 = []
y2 = []
for i in range(len(y)):
if y[i] == 0:
x1.append(x[i][0])
y1.append(x[i][1])
elif y[i] == 1:
x2.append(x[i][0])
y2.append(x[i][1])
# 以上均为处理数据,生成出两类数据
p = logistic(x, y)
p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01) # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01
x_test = np.arange(10, 20, 0.01)
y_test = (-1 * p.theta[0] / p.theta[1]) * x_test
plt.plot(x_test, y_test, c='g', label='logistic_line')
plt.scatter(x1, y1, c='r', label='positive')
plt.scatter(x2, y2, c='b', label='negative')
plt.legend(loc=2)
plt.title('punish value = ' + p.punish.__str__())
plt.show()
if __name__ == '__main__':
test1()
运行结果如下图

用python实现逻辑回归的更多相关文章
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 机器学习之使用Python完成逻辑回归
一.任务基础 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的 ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- Python之逻辑回归模型来预测
建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt impor ...
- python机器学习-逻辑回归
1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最 ...
- python机器学习——逻辑回归
我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...
- python实现逻辑回归
首先得明确逻辑回归与线性回归不同,它是一种分类模型.而且是一种二分类模型. 首先我们需要知道sigmoid函数,其公式表达如下: 其函数曲线如下: sigmoid函数有什么性质呢? 1.关于(0,0. ...
- Python使用逻辑回归估算OR值
第一种是统计学方法,需要用到 statsmodels包 statsmodels是统计和计量经济学的package,包含了用于参数评估和统计测试的实用工具 第二种是机器学习,需要使用sklearn中的L ...
- Python之逻辑回归
代码: import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegress ...
随机推荐
- 前端学HTTP之字符集
前面的话 HTTP报文中可以承载以任何语言表示的内容,就像它能承载图像.影片或任何类型的媒体那样.对HTTP来说,实体主体只是二进制信息的容器而已.为了支持国际性内容,服务器需要告知客户端每个文档的字 ...
- Objective-C枚举的几种定义方式与使用
假设我们需要表示网络连接状态,可以用下列枚举表示: enum CSConnectionState { CSConnectionStateDisconnected, CSConnectionStateC ...
- .Net语言 APP开发平台——Smobiler学习日志:如何快速在手机上实现ContextMenu
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的&qu ...
- Android中的flexboxlayout布局
提到FlexboxLayout大家估计有点模糊,它是谷歌最近开源的一个android排版库,它的前身Flexbox是2009年W3C提出了一种新的布局,可以简便.完整.响应式的实现页面布局,Flexb ...
- swift开发新项目总结
新项目用swift3.0开发,现在基本一个月,来总结一下遇到的问题及解决方案 1,在确定新项目用swift后,第一个考虑的问题是用纯swift呢?还是用swift跟OC混编 考虑到新项目 ...
- Kafka:主要参数详解(转)
原文地址:http://kafka.apache.org/documentation.html ############################# System ############### ...
- Linux基础介绍【第一篇】
Linux简介 什么是操作系统? 操作系统,英文名称Operating System,简称OS,是计算机系统中必不可少的基础系统软件,它是应用程序运行以及用户操作必备的基础环境支撑,是计算机系统的核心 ...
- Linux监控工具介绍系列——OSWatcher Black Box
OSWatcher Balck Box简介 OSWatcher Black Box (oswbb)是Oracle开发.提供的一个小巧,但是实用.强大的系统工具,它可以用来抓取操作系统的性能指标,用 ...
- 邻接矩阵的深度优先遍历(java版)
这是一个有向边带权的图 顶点数组:[v0, v1, v2, v3, v4] 边数组: v0 v1 v2 v3 v4 v0 6 v1 9 3 v2 2 5 v3 1 v4 package com.dat ...
- ASP.NET Aries 4.0 开源发布:已完成基础功能优化重写
主要更新: 1:增加AR.Global.GetUser() 方法返回当前登陆者的用户信息. 2:重写AR.Combobox 支持下拉树. 3:调整及扩展Input下拉的配置参数. 4:优化及新增AR. ...