// 题意 :给你两个数 m(10^6),k(10^8) 求第k个和m互质的数是什么
这题主要需要知道这样的结论
gcd(x,n)=1 <==> gcd(x+n,n)=1
证明 假设 gcd(x,n)=1 gcd(x+n,n)!=1
令 a=n+x b=n 设 gcd(a,b)=k>1
那么有 a=Ak b=Bk x+Bk=Ak => x=(A-B)k
k是n的因子 那么 x=(A-B)k 显然不成立 因为x不可能含有因子k(因为x,n互质);
所以假设不成立 那么这题剩下的就算求 比m小 与m互质的数就可以了
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define maxm 100010
#define maxn 1000110
int prim[],p;
bool f[maxn];
int ans[maxn],rp[];
void getprime(){
int i,j;
for(i=;i<=;i+=)
prim[i]=;
for(i=;i*i<=;i+=)
if(!prim[i])
for(j=i*i;j<=;j+=i)
prim[j]=;
for(i=;i<=;i++)
if(!prim[i]) prim[p++]=i;//,printf("%d ",i);
}
int main()
{
getprime();
int m,k;
while(scanf("%d %d",&m,&k)!=EOF){
int i=,j,n=m,num=;
while(i<p){ //分解
if(n%prim[i]==){
rp[num++]=prim[i];
while(n%prim[i]==) n=n/prim[i];
}
if(n==) break;
i++;
}
if(n!=) rp[num++]=n;
for(i=;i<=m;i++)
f[i]=;
for(i=;i<num;i++)//筛选删除
for(j=rp[i];j<=m;j+=rp[i])
f[j]=;
num=;
for(i=;i<=m;i++) // 其实这里面的num可以用容斥原理算 估计会快在常数上
if(!f[i]) ans[num++]=i;
printf("%d\n",ans[(k-)%num]+(k-)/num*m); }
return ;
}

poj 2773 Happy 2006的更多相关文章

  1. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  2. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  3. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  4. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  5. POJ 2773 Happy 2006(容斥原理+二分)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10827   Accepted: 3764 Descr ...

  6. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  7. poj 2773 Happy 2006 容斥原理+二分

    题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...

  8. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  9. Happy 2006 POJ - 2773 容斥原理+二分

    题意: 找到第k个与m互质的数 题解: 容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))- 二分复杂度也是O(log(n)) 容斥原理+二分这个r 代码: 1 #include ...

随机推荐

  1. [vijos 1770]大内密探

    描述 在古老的皇宫中,有N个房间以及N-1条双向通道,每条通道连接着两个不同的房间,所有的房间都能互相到达.皇宫中有许多的宝物,所以需要若干个大内密探来守护.一个房间被守护当切仅当该房间内有一名大内密 ...

  2. hibernate 多对多

    HibernateHibernate多对多关联映射通常别拆分成两个多对一关联映射1. 下面的HostBean.UserBean.UserHostBean,UserHostBean是两个表之间的关联表, ...

  3. 深入浅出ES6(六):解构 Destructuring

    作者 Jason Orendorff  github主页  https://github.com/jorendorff 什么是解构赋值? 解构赋值允许你使用类似数组或对象字面量的语法将数组和对象的属性 ...

  4. Pycharm中的实用功能(网上看到的,感觉还不错)

    实时比较 PyCharm 对一个文件里你做的改动保持实时的跟踪,通过在编辑器的左侧栏显示一个蓝色的标记.这一点非常方便,我之前一直是在Eclipse里面用命令“Compare against HEAD ...

  5. lintcode:Fibonacci 斐波纳契数列

    题目: 斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, ...

  6. 对于linux下system()函数的深度理解(整理)

    原谅: http://blog.sina.com.cn/s/blog_8043547601017qk0.html 这几天调程序(嵌入式linux),发现程序有时就莫名其妙的死掉,每次都定位在程序中不同 ...

  7. java io流缓冲理解

    bufferedinputstream和bufferedoutputstream:这两个类是在inputstream和outputstream的基础上增加了一个buffer的缓冲区,从而使数据不直接写 ...

  8. Visual StudioTools for Unity 使用技巧2

    在之前的博客介绍了 Visual Studio Tools for Unity的安装和使用. http://www.cnblogs.com/petto/p/3886811.html 其实这个工具还提供 ...

  9. Java学习笔记之:Java封装

    一.引言 在面向对象程式设计方法中,封装(英语:Encapsulation)是指,一种将抽象性函式接口的实作细节部份包装.隐藏起来的方法. 封装可以被认为是一个保护屏障,防止该类的代码和数据被外部类定 ...

  10. 转 Android的消息处理机制(图+源码分析)——Looper,Handler,Message

    作为一个大三的预备程序员,我学习android的一大乐趣是可以通过源码学习google大牛们的设计思想.android源码中包含了大量的设计模式,除此以外,android sdk还精心为我们设计了各种 ...