题目描述 Description
经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B。出于美观考虑,小 A 希望切面能尽量光滑且和谐。于是她找到你,希望你能帮她找出最好的切割方案。 
出于简便考虑,我们将切糕视作一个长 P、宽 Q、高 R 的长方体点阵。我们将位于第 z层中第 x 行、第 y 列上(1≤x≤P, 1≤y≤Q, 1≤z≤R)的点称为(x,y,z),它有一个非负的不和谐值 v(x,y,z)。一个合法的切面满足以下两个条件: 
1. 与每个纵轴(一共有 P*Q 个纵轴)有且仅有一个交点。即切面是一个函数 f(x,y),对于所有 1≤x≤P, 1≤y≤Q,我们需指定一个切割点 f(x,y),且 1≤f(x,y)≤R。 
2. 切面需要满足一定的光滑性要求,即相邻纵轴上的切割点不能相距太远。对于所有的 1≤x,x’≤P 和 1≤y,y’ ≤Q,若|x-x’|+|y-y’|=1,则|f(x,y)-f(x’,y’)| ≤D,其中 D 是给定的一个非负整数。 
可能有许多切面f 满足上面的条件,小A 希望找出总的切割点上的不和谐值最小的那个,即 ∑v(x,y, f(x,y))最小。
输入描述 Input Description
输入文件第一行是三个正整数P,Q,R,表示切糕的长P、宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
输出描述 Output Description
输出仅包含一个整数,表示在合法基础上最小的总不和谐值。
样例输入 Sample Input
input1
2 2 2 
6 1 
6 1 
2 6 
2 6 
input2 
2 2 2 
5 1 
5 1 
2 5 
2 5
样例输出 Sample Output
output1
output2
12
数据范围及提示 Data Size & Hint
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。 
 
 
终于AC了
弱爆了,调一个网络流都调了一上午,各种异常错误应有尽有
这是一个很巧妙的网络流最小割,每一个竖列都要切一个点,所以最开始我们从上一直连到下面
但是还有第二个条件,相邻的两个点高度差不能超过D
先不管它
我们现在求出了一个最大流,但是不满足第二个条件
所以我们对于每一个点(x,y,z)都向(x-d,y,z)的相邻的4个点连一条无穷大的边,使这种情况不是最大流
然后就是套网络流的模板了
 
 var
map:array[..,-..]of longint;
dis,his,pre:array[..]of longint;
vh:array[..]of longint;
fx:array[-..]of longint;
a,b,c,d,flow:longint; procedure init;
var
i,j,k:longint;
begin
read(b,c,a,d);
for i:= to a do
for j:= to b do
for k:= to c do
begin
read(map[(i-)*b*c+(j-)*c+k,]);
if i>d then
begin
if k> then map[(i-)*b*c+(j-)*c+k,]:=;
if j> then map[(i-)*b*c+(j-)*c+k,]:=;
if k<c then map[(i-)*b*c+(j-)*c+k,]:=;
if j<b then map[(i-)*b*c+(j-)*c+k,]:=;
end;
end;
fx[]:=b*c;
fx[]:=-d*b*c-;
fx[]:=-d*b*c-c;
fx[]:=-d*b*c+;
fx[]:=-d*b*c+c;
for i:= to do
fx[-i]:=-fx[i];
end; function max(x,y:longint):longint;
begin
if x>y then exit(x);
exit(y);
end; procedure work;
var
i,j,aug,min:longint;
flag:boolean;
begin
vh[]:=a*b*c+;
i:=;
aug:=maxlongint;
while dis[]<=a*b*c+ do
begin
flag:=false;
his[i]:=aug;
if i= then
begin
for j:= to b*c do
if dis[]=dis[j]+ then
begin
flag:=true;
pre[j]:=-;
break;
end;
if flag then i:=j;
end
else
for j:=- to do
if i+fx[j]> then
if (map[i,j]>)and(dis[i]=dis[i+fx[j]]+) then
begin
flag:=true;
pre[i+fx[j]]:=-j;
if aug>map[i,j] then aug:=map[i,j];
inc(i,fx[j]);
if i>a*b*c then
begin
inc(flow,aug);
while i<> do
begin
inc(map[i,pre[i]],aug);
dec(map[max(i+fx[pre[i]],),-pre[i]],aug);
inc(i,fx[pre[i]]);
if i< then i:=;
end;
aug:=maxlongint;
end;
break;
end;
if flag then continue;
min:=a*b*c+;
if i= then
begin
for j:= to b*c do
if min>dis[j] then min:=dis[j];
end
else
for j:=- to do
if i+fx[j]> then
if (map[i,j]>)and(dis[i+fx[j]]<min) then min:=dis[i+fx[j]];
dec(vh[dis[i]]);
if vh[dis[i]]= then break;
dis[i]:=min+;
inc(vh[dis[i]]);
if i<> then
begin
inc(i,fx[pre[i]]);
if i< then i:=;
aug:=his[i];
end;
end;
write(flow);
end; begin
init;
work;
end.

3144:[HNOI2013]切糕 - BZOJ的更多相关文章

  1. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  2. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  3. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

  4. 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1526  Solved: 827[Submit][Status] ...

  5. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  6. BZOJ 3144 [HNOI2013]切糕 (最大流+巧妙的建图)

    题面:洛谷传送门 BZOJ传送门 最大流神题 把点权转化为边权,切糕里每个点$(i,j,k)$向$(i,j,k+1)$连一条流量为$v(i,j,k)$的边 源点$S$向第$1$层的点连边,第$R+1$ ...

  7. 【BZOJ】3144: [Hnoi2013]切糕

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3144 MDZZ,不知道为什么被卡常数了/TAT(特判才过去的....论vector的危害性 ...

  8. 【刷题】BZOJ 3144 [Hnoi2013]切糕

    Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x, ...

  9. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

随机推荐

  1. Oracle学习笔记4 使用Navicat for Oracle 连接Oracle时出现错误:ORA-28547: connection to server failed, probable Oracle Net admin error

    出问题到的机器环境: Oracle 11gR2 64bit Navicat for Oracle 11.0.10 根据网上一些大神的做法及个人的一些推测,总结如下: 问题出现的原因:Navicat与O ...

  2. ZOJ 3872 Beauty of Array (The 12th Zhejiang Provincial Collegiate Programming Contest )

    对于没有题目积累和clever mind的我来说,想解这道题还是非常困难的,也根本没有想到用dp. from: http://blog.csdn.net/u013050857/article/deta ...

  3. js jquery jquery.wordexport.js 实现导出word

    由于工作需要,将一个页面导出word文档,主要是简历!经过百度搜索之后,没找到结果,无奈之下只能求助Google,意外发现jquery一款插件可以实现这个功能!而且效果还算可以! 基本可以实现想要的功 ...

  4. jquery实现点击页面空白隐藏指定菜单

    注意:dmenu是一个div的class名哦 代码如下 复制代码 $('html,body').click(function(e){  if(e.target.id.indexOf("dme ...

  5. 使用Struts2 验证框架,验证信息重复多次出现

    版权声明:本文为博主原创文章,未经博主允许不得转载. 问题描述:第一次提交表单.某个数据不符合规则,就会出现一条错误信息.再次提交,上次显示的错误信息不消失,又多出一条一模一样的错误信息.提交几次,就 ...

  6. c#中sqlhelper类的编写(二)

    上一篇文章讲了简易版的SqlHelper类的编写,我们在这里就上一篇文章末尾提出的问题写出解决方案. sql语句注入攻击已经是众所周知的了.我们如何在C#中保护自己的数据库不被这样的方式攻击呢? 不用 ...

  7. 分享9款很有创意的HTML5动画

    1.HTML5 SVG Loading 动画加载特效 这是一款基于HTML5/CSS3和SVG的Loading加载动画特效,一共有4种不同的动画效果.每一组Loading动画都非常可爱,他们都非常欢快 ...

  8. equals()源代码及释义

    源代码: public boolean equals(Object anObject) {if (this == anObject) { return true;}if (anObject insta ...

  9. iOS开发零基础教程之生成git所需的SSH keys

    在我们github看到了一个不错的第三方库时,可能我们想把他git clone到本地,我们需要复制他的SSH URL,如下图: 复制完地址之后,我们需要打开终端,然后输入命令: git clone + ...

  10. iPhone Tableview分批显示数据

    //非原创   iPhone Tableview分批显示数据是本文要介绍的内容,主要讲解的是数据的显示.iPhone屏幕尺寸是有限的,如果需要显示的数据很多,可以先数据放到一个table中,先显示10 ...