洛谷

说这是一道单调队列好题,但是我并不是用单调队列做的诶。

如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了。

\(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\),边长是\(k\)的正方形的最佳答案。

转移方程很简单,但是你一定会妥妥的\(\texttt{TLE}\)。

那么我们怎么做呢?

往倍增的方向去想,设\(f[i][j][k]\)表示左上角为\((i,j)\),边长为\(2^j\)的正方形的最佳答案。

那么状态就这么转移:

\[mx[i][j]=max(mx[i][j],max(mx[i+(1<<k)][j+(1<<k)],max(mx[i+(1<<k)][j],mx[i][j+(1<<k)])));
\]

\[mn[i][j]=min(mn[i][j],min(mn[i+(1<<k)][j+(1<<k)],min(mn[i+(1<<k)][j],mn[i][j+(1<<k)])));
\]

很简单的转移方程,不过复杂度肯定比不上单调队列的做法了。

显然复杂度\(O(n^2~log(n))\)。

代码:

#include <bits/stdc++.h>
using namespace std; const int N=1001;
int a,b,n,t[N][N];
int mx[N][N],mn[N][N],ans=2000000000,tmp; int main()
{
ios::sync_with_stdio(false);
cin>>a>>b>>n;
for (int i=0;i<a;++i)
for (int j=0;j<b;++j)
cin>>t[i][j],mn[i][j]=mx[i][j]=t[i][j];
while ((1<<(tmp+1))<=n) ++tmp;
for (int k=0;k<tmp;++k)
for (int i=0;i+(1<<k)<a;++i)
for (int j=0;j+(1<<k)<b;++j) {
mx[i][j]=max(mx[i][j],max(mx[i+(1<<k)][j+(1<<k)],max(mx[i+(1<<k)][j],mx[i][j+(1<<k)])));
mn[i][j]=min(mn[i][j],min(mn[i+(1<<k)][j+(1<<k)],min(mn[i+(1<<k)][j],mn[i][j+(1<<k)])));
}
for (int i=0;i<=a-n;++i)
for (int j=0;j<=b-n;++j) {
int MX=max(mx[i][j],max(mx[i+n-(1<<tmp)][j+n-(1<<tmp)],max(mx[i+n-(1<<tmp)][j],mx[i][j+n-(1<<tmp)])));
int MN=min(mn[i][j],min(mn[i+n-(1<<tmp)][j+n-(1<<tmp)],min(mn[i+n-(1<<tmp)][j],mn[i][j+n-(1<<tmp)])));
ans=min(MX-MN,ans);
}
cout<<ans;
return 0;
}

洛谷 P2216 [HAOI2007]理想正方形的更多相关文章

  1. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  2. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  3. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  4. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  5. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  6. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  7. BZOJ1047或洛谷2216 [HAOI2007]理想的正方形

    BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...

  8. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  9. 洛谷P2216 理想的正方形(单调队列)

    洛谷P2216 理想的正方形 题目链接 思路: 直接暴力显然不可行,可以发现每一个矩形向右边扩展时是一列一列增加,于是可以想到单调队列,用数组来维护当前每列的最大值.因为行也有限制,所以还要用一个单调 ...

随机推荐

  1. atitit.js的 字符串内容 转义  js处理html

    atitit.js的 字符串内容 转义  js处理html 1. js处理html的问题 1 2. js的 字符串内容 转义 1 2.1. 处理流程 1 3. 下面的表格列出了其余的特殊字符,这些特殊 ...

  2. Java中的四种引用类型,强引用,软引用,弱引用,虚引用

    对于Java中的垃圾回收机制来说,对象是否被回收的标准在于该对象是否被引用.因此,引用也是JVM进行内存管理的一个重要概念. Java中对象的引用一般有以下4种类型: 1强引用  2软引用  3弱引用 ...

  3. Http basic Auth 认证方式帮助类

    BasicAuthenticationUtil import java.io.IOException; import java.security.MessageDigest; import javax ...

  4. jsp的页面包含——静态包含、动态包含

    一.静态包含:包含的文件可以是jsp文件.html文件.文本文件或者一段java代码.<%@ include file="要包含的文件路径"%> 实质是先将所包含的文件 ...

  5. Thrall’s Dream 第四届山东省省赛 (直接暴力DFS)

    题目链接:题目 AC代码: #include<iostream> #include<algorithm> #include<vector> #include< ...

  6. iOS swift 富文本显示 富文本在iOS中使用场景和解决方案

    项目中很多地方都会用到富文本的内容:比如一般的商品详情,视频详情,资讯详情等,运营人员通过后台的富文本编辑器编辑的内容,前端拿到的就是一段富文本的字符串,这富文本大多都是图片和文字的组合.我们今天介绍 ...

  7. SlidingMenu.jar 抽屉使用,避免了使用libaray的不兼容的尴尬

         尽管说这个东西出来了一段时间了,可是好东西还是要分享一下的. 之前我们使用的都是libaray.各种出错.团队开发也不好操作.不知道 哪个好心人干脆把这个工具封装成一个jar,真心为你点赞. ...

  8. JVM Specification 9th Edition (2) Chapter 1. Introduction

    Chapter 1. Introduction 翻译太累了,我就这样的看英文吧. 内容列表 1.1. A Bit of History 1.2. The Java Virtual Machine 1. ...

  9. 线程池 (thread pool) 的类型与实现方式

    在许多应用中需要频繁的创建许多生命周期很短的线程,如果用传统方法的话就会造成大量的资源了浪费,java的设计者们考虑到了这点在java中加入了线程池这个特性,它负责管理大量的线程的创建销毁等操作. 首 ...

  10. JAVA图像缩放处理

    http://www.blogjava.net/kinkding/archive/2009/05/23/277552.html ———————————————————————————————————— ...