[洛谷P4550]收集邮票
题目大意:有$n(n\leqslant10^4)$个物品,第$i$次会从这$n$个物品中随机获得一个,并付出$i$的代价,问获得所有的$n$个物品的代价的期望。
题解:令$f_i$表示现在已经获得了$i$种物品,取完所有物品还需的次数的期望。
$$
f_i=
\begin{cases}
\dfrac inf_i+\dfrac{n-i}nf_{i+1}+1&(i<n)\\
0&(i=n)
\end{cases}\\
化简得f_i=
\begin{cases}
f_{i+1}+\dfrac n{n-i}&(i<n)\\
0&(i=n)
\end{cases}\\
$$
令$g_i$表示已经获得了$i$种物品,取完所有物品还需的代价的期望(假设原来的物品是凭空获得,下面的物品代价从$1$开始)
$$
g_i=
\begin{cases}
\dfrac in(g_i+f_i+1)+\dfrac{n-i}n(g_{i+1}+f_{i+1}+1)&(i<n)\\
0&(i=n)
\end{cases}\\
化简得g_i=
\begin{cases}
\dfrac i{n-i}f_i+g_{i+1}+f_{i+1}+\dfrac n{n-i}&(i<n)\\
0&(i=n)
\end{cases}\\
$$
卡点:无
C++ Code:
#include <cstdio>
#define maxn 100010
int n;
double f[maxn], g[maxn];
int main() {
scanf("%d", &n);
for (int i = n - 1; ~i; --i) {
f[i] = f[i + 1] + n / static_cast<double> (n - i);
g[i] = i / static_cast<double> (n - i) * f[i] + g[i + 1] + f[i + 1] + n / static_cast<double> (n - i);
}
printf("%.2lf\n", g[0]);
return 0;
}
[洛谷P4550]收集邮票的更多相关文章
- bzoj1426 (洛谷P4550) 收集邮票——期望
题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...
- 洛谷P4550 收集邮票(概率期望)
传送门 神仙题啊……这思路到底是怎么来的…… ps:本题是第$k$次买邮票需要$k$元,而不是买的邮票标号为$k$时花费$k$元 我们设$g[i]$表示现在有$i$张,要买到$n$张的期望张数,设$P ...
- 洛谷 P4538 收集邮票
题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所 ...
- bzoj1426(洛谷4550)收集邮票
题目:https://www.luogu.org/problemnew/show/P4550 全靠看TJ.怎么办?可是感觉好难呀. 首先设出 f[i] 为“买了 i 种,还要买到n种的期望次数”,s[ ...
- P4550 收集邮票
P4550 收集邮票 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由 ...
- P4550 收集邮票-洛谷luogu
传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...
- 题解 洛谷P4550/BZOJ1426 【收集邮票】
这显然是一道概率的题目(废话) 设发\(f[i]\)表示买到第\(i\)张邮票还需要购买的期望次数,\(g[i]\)表示买到第\(i\)张邮票还需要期望花费的钱. 那么答案显然为\(g[0]\),我们 ...
- 洛谷P4550 【收集邮票】
题目链接: 神仙题QAQ 题目分析: 概率期望题是不可能会的,一辈子都不可能会的QAQ 这个题也太仙了 首先明确一下题意里面我感觉没太说清楚的地方,这里是抽到第\(i\)次要\(i\)元钱,不是抽到第 ...
- 【洛谷】P2725 邮票 Stamps(dp)
题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描述 例如,假设有 1 分和 3 ...
随机推荐
- vim 安装
Ubuntu 16.04 下 Vim安装及配置 默认已经安装了VIM-tiny linuxidc@linuxidc:~$ locate vi | grep 'vi$' |xargs ls -al lr ...
- Myeclipse - 问题集 - specified vm install not found
In Eclipse, click the ant file -- Run As -- External Tools Configuration and click on the JRE tab. S ...
- 抽样分布(3) F分布
定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密 ...
- VDI数据恢复
环境:cirtix xendesktop 问题:VDI无法正常启动,后台登录查看报错.多次重启无效果,客户部分数据存放在启动盘. 解决方法:1.创建一台新的VDI(必须保证关机)2.将原有VDI启动盘 ...
- MySQL☞upper函数
upper(列名/字符串):把小写字母改为大写字母 格式: select upper(列名/字符串) from 表名 如下图:
- [CF294B]Shaass and Bookshelf
问题描述 Shaass拥有n本书.他想为他的所有书制作一个书架,并想让书架的长宽尽量小.第i本书的厚度是t[i],且这本书的纸张宽度是w[i].书的厚度是1或2,所有书都有同样的高度(即书架的高是均匀 ...
- HDU - 3415(DP + 单调队列)
链接:HDU - 3415 题意:给出一个包含 n 个数的环,求满足长度大于 0 小于等于 k 的最大区间和. 题解:将数组加倍,形成环.求一个前缀和sum.枚举每一个sum[i],以 i 结尾的最大 ...
- 【转载】完全版线段树 by notonlysuccess大牛
原文出处:http://www.notonlysuccess.com/ 今晚上比赛就考到了 排兵布阵啊,难受. [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时 ...
- geth账户密码
xiaocong geth账户密码 123 {d6abe909013d8da914ae2a08c9b58e7b76601b39} 账户密码 123456 0x4A7F15104F54dB3214D2F ...
- BZOJ 3924 ZJOI2015 幻想乡战略游戏 树链剖分
题目链接:https://www.luogu.org/problemnew/show/P3345(bzoj权限题) 题意概述:动态维护树的上所有点到这棵树的带权重心的距离和.N,Q<=10000 ...