洛谷题目链接:[ZJOI2005]午餐

题目描述

上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂。这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭。由于每个人的口味(以及胃口)不同,所以他们要吃的菜各有不同,打饭所要花费的时间是因人而异的。另外每个人吃饭的速度也不尽相同,所以吃饭花费的时间也是可能有所不同的。

THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭。每个人打完饭后立刻开始吃,所有人都吃完饭后立刻集合去六教地下室进行下午的训练。

现在给定了每个人的打饭时间和吃饭时间,要求安排一种最佳的分队和排队方案使得所有人都吃完饭的时间尽量早。

假设THU ACM小组在时刻0到达十食堂,而且食堂里面没有其他吃饭的同学(只有打饭的师傅)。每个人必须而且只能被分在一个队伍里。两个窗口是并行操作互不影响的,而且每个人打饭的时间是和窗口无关的,打完饭之后立刻就开始吃饭,中间没有延迟。

现在给定N个人各自的打饭时间和吃饭时间,要求输出最佳方案下所有人吃完饭的时刻。

输入输出格式

输入格式:

第一行一个整数N,代表总共有N个人。

以下N行,每行两个整数 Ai,Bi。依次代表第i个人的打饭时间和吃饭时间。

输出格式:

一个整数T,代表所有人吃完饭的最早时刻。

输入输出样例

输入样例#1:

5

2 2

7 7

1 3

6 4

8 5

输出样例#1:

17

说明

所有输入数据均为不超过200的正整数。

题意: 有\(n\)个人.,每个人有一个排队时间和吃饭时间,两个窗口,窗口每时每刻都可以有一个人在排队,且一个人排完队后另一个人可以马上接着他排队,要使每个人都打完饭吃完最短需要多久.

题解: 首先我们先想一下如果只有一个窗口该如何记录最短时间.如果只有一个窗口,那么最短时间就只与排队顺序有关了,那么应该让谁排在前面呢?我们这里假设\(i\)的等待时间为\(wait[i]\),吃饭时间为\(eat[i]\),假设要让\(i\)排在\(j\)前面,就要满足:\(wait[i]+wait[j]+eat[j] <= wait[j]+wait[i]+eat[i])\)

化一下式子,可以得到\(eat[i] >= eat[j]\),也就是说,按照吃东西的时间从大到小排序,这样可以得到的结果是最优的.

那么如果有两个窗口呢?这里我们可以用DP的方法来维护一下.我们用状态\(f[i][j][k]\)表示前\(i\)个人都吃完饭,且在第一个窗口等待时间为\(j\),第二个为\(k\)所需要的最少时间.那么可以写出状态转移方程:$$f[i][j][k]=min(f[i][j][k], max(f[i-1][j-wait[i]][k], j+eat[i]))$$和$$f[i][j][k]=min(f[i][j][k], max(f[i-1][j][k-wait[i]], k+eat[i]))$$.

然而这样做的话时空复杂度是\(O(n*V^2)\)的,其中\(V=n^2\),显然这样的复杂度是过不了的.

那么我们需要对这个状态进行一些优化.

我们会发现前\(i\)个人的等待时间之和是可以确定的,也就是说,我们并不需要记录两个窗口的等待时间,只需要记录一个窗口的等待时间就可以算出另一个窗口的等待时间,可以设状态\(f[i][j]\)表示前\(i\)个人都吃完饭,并且第一个窗口等待时间为\(j\).这样定义的状态可以保证是唯一的.转移也类似上面的转移方法:$$f[i][j] =min(f[i][j], max(f[i-1][j-wait[i]], j+eat[i]))$$和$$f[i][j] = min(f[i][j], max(f[i-1][j], sum[i]-j+eat[i]))$$其中\(sum[i]\)表示前\(i\)个人的等待总时间.

#include<bits/stdc++.h>
using namespace std;
const int N = 200+5;
typedef int _int;
#define int long long int n, sum[N], ans = 2e9;
int f[N][N*N]; struct people{
int wait, eat;
}a[N]; bool cmpp(people a, people b){ return a.eat > b.eat; } _int main(){
ios::sync_with_stdio(false);
cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i].wait >> a[i].eat;
sort(a+1, a+n+1, cmpp);
for(int i = 1; i <= n; i++) sum[i] = sum[i-1]+a[i].wait;
memset(f, 127/3, sizeof(f)), f[0][0] = 0;
for(int i = 1; i <= n; i++)
for(int j = 0; j <= sum[n]; j++){
if(j >= a[i].wait) f[i][j] = min(f[i][j], max(f[i-1][j-a[i].wait], j+a[i].eat));
f[i][j] = min(f[i][j], max(f[i-1][j], sum[i]-j+a[i].eat));
}
for(int i = 0; i <= sum[n]; i++) ans = min(ans, f[n][i]);
cout << ans << endl;
return 0;
}

[洛谷P2577] [ZJOI2005]午餐的更多相关文章

  1. 【题解】洛谷P2577 [ZJOI2005] 午餐(DP+贪心)

    次元传送门:洛谷P2577 思路 首先贪心是必须的 我们能感性地理解出吃饭慢的必须先吃饭(结合一下生活) 因此我们可以先按吃饭时间从大到小排序 然后就能自然地想到用f[i][j][k]表示前i个人在第 ...

  2. 洛谷P2577 [ZJOI2005]午餐 打饭时间作为容量DP

    P2577 [ZJOI2005]午餐 )逼着自己做DP 题意: 有n个人打饭,每个人都有打饭时间和吃饭时间.有两个打饭窗口,问如何安排可以使得总用时最少. 思路: 1)可以发现吃饭时间最长的要先打饭. ...

  3. 洛谷P2577 [ZJOI2005]午餐 dp

    正解:序列dp 解题报告: 传送门! 这题首先要想到一个显然的贪心:每个窗口的排队顺序都是按照吃饭时间从大到小排序的 证明如下: 这种贪心通常都是用微扰法,这题也不例外 现在假如已经确定了每个窗口有哪 ...

  4. 洛谷 P2577 [ZJOI2005]午餐

    这道题目比较难想. 题解: 算法:贪心+dp 容易想到贪心:吃饭慢的先打饭节约时间, 所以先将人按吃饭时间从大到小排序. 然后就是dp了: 首先,应该想到f[i][j][k]:前i个人,在1号窗口打饭 ...

  5. 洛谷 P2577 [ZJOI2005]午餐 题解

    每日一题 day56 打卡 Analysis 算法:贪心+dp 容易想到贪心:吃饭慢的先打饭节约时间, 所以先将人按吃饭时间从大到小排序. 然后就是dp了: 首先,应该想到f[i][j][k]:前i个 ...

  6. BZOJ1899或洛谷2577 [ZJOI2005]午餐

    BZOJ原题链接 洛谷原题链接 解决这题得先想到一个贪心:吃饭慢的先排队. 并不会证明(感觉显然 设\(f[i][j][k]\)表示已经排好了前\(i\)人,第一个队伍需要花费的打饭时间为\(j\), ...

  7. 洛谷 2577 [ZJOI2005]午餐——序列dp

    题目:https://www.luogu.org/problemnew/show/P2577 可以从只有一个窗口的角度思考出一个贪心结论.就是应当按吃饭时间(不算打饭时间)从大到小排序.这样交换相邻两 ...

  8. Luogu P2577 [ZJOI2005]午餐(dp)

    P2577 [ZJOI2005]午餐 题面 题目描述 上午的训练结束了, \(THU \ ACM\) 小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时 ...

  9. 【洛谷P2577】[ZJOI2005]午餐

    午餐 题目链接 DP题都辣么毒瘤的么.. 首先,看一下题解 我们就有了思路: 贪心:显然,让吃饭慢的先打饭,sort一遍(证明?不存在的.. DP:f[i][j][k]表示前i个人,窗口1的打饭时间为 ...

随机推荐

  1. 软件工程第四周作业-PSP

    psp表格 类别 内容 开始时间 结束时间 中断时间 delta时间 学习 学习C# 10.6下午7:00 10.6下午8:00 - 60min 写代码 写主函数以及一些小的方法 10.7下午2:00 ...

  2. c++SDK c#调用_疑难杂症

    在编写过程中,会不时遇到各种问题: 1.dll明显在和exe同一目录下但调用不成功, 2.运行正常,没有报错,参数数值运行过程中也一致,但结果就是达不到预想, 都是dll没有引用完全造成的影响. 推荐 ...

  3. Calculator 2

    github地址:https://github.com/YooRarely/object-oriented.git 新增: 计算类(拥有计算功能) 采用符号优先级计算方法 对符号不匹配的如 -2 ,自 ...

  4. 【IdentityServer4文档】- 贡献

    贡献 我们非常乐于接受社区贡献,但您应遵循一些指导原则,以便我们可以很方便的解决这个问题. 如何贡献? 最简单的方法是打开一个问题并开始讨论.然后,我们可以决定如何实现一个特性或一个变更.如果您即将提 ...

  5. Java中ArrayList与数组间相互转换

    在实际的 Java 开发中,如何选择数据结构是一个非常重要的问题. 衡量标准化(读的效率与改的效率) : ① Array: 读快改慢 ② Linked :改快读慢 ③ Hash:介于两者之间 实现Li ...

  6. CheckStateChanged(复选框选中状态更改事件)和 CheckedChanged(单选按钮选中状态更改事件)二者区别?

    CheckStateChanged(复选框选中状态更改事件)和 CheckedChanged(单选按钮选中状态更改事件)二者区别: 复选框控件(CheckBox)提供了CheckedChanged控件 ...

  7. TScreen 类 - 通过 Screen 更换光标

    //更换窗体或某个控件的光标可以不通过 Screen 对象, 譬如: begin   Self.Cursor := crAppStart;   Panel1.Cursor := crHandPoint ...

  8. Spring MVC实践

    MVC 设计概述 在早期 Java Web 的开发中,统一把显示层.控制层.数据层的操作全部交给 JSP 或者 JavaBean 来进行处理,我们称之为 Model1: 出现的弊端: JSP 和 Ja ...

  9. ViewData与ViewBag

    ViewData与ViewBag使用的是同一个数据源,因此数据一样,只是ViewBag 不再是字典的键值对结构,而是 dynamic 动态类型(http://www.cnblogs.com/kissd ...

  10. C结构体【转】

    “结构”是一种构造类型,它是由若干“成员”组成的.每一个成员可以是一个基本数据类型或者又是一个构造类型.结构既是一种“构造”而成的数据类型,那么在说明和使用之前必须先定义它,也就是构造它.如同在说明和 ...