卷积网络博大精深,不同的网络模型,跑出来的结果是不一样,在不知道使用什么网络的情况下跑自己的数据集时,我建议最好去参考基于cnn的手写数字识别网络构建,在其基础上进行改进,对于一般测试数据集有很大的帮助。

分享一个网络构架和一中训练方法:

# coding:utf-8
import os
import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # cnn模型高度抽象特征
def cnn_face_discern_model(X_,Y_):
weights = {
"wc1":tf.Variable(tf.random_normal([3,3,1,64],stddev=0.1)),
"wc2":tf.Variable(tf.random_normal([5,5,64,128],stddev=0.1)),
"wd3":tf.Variable(tf.random_normal([7*7*128,1024],stddev=0.1)),
"wd4": tf.Variable(tf.random_normal([1024, 12], stddev=0.1))
}
biases = {
"bc1":tf.Variable(tf.random_normal([64],stddev=0.1)),
"bc2":tf.Variable(tf.random_normal([128],stddev=0.1)),
"bd3": tf.Variable(tf.random_normal([1024],stddev=0.1)),
"bd4": tf.Variable(tf.random_normal([12],stddev=0.1))
}
x_input = tf.reshape(X_,shape=[-1,28,28,1]) # 第一层卷积层
_conv1 = tf.nn.conv2d(x_input,weights["wc1"],strides=[1,1,1,1],padding="SAME")
_conv1_ = tf.nn.relu(tf.nn.bias_add(_conv1,biases["bc1"]))
# 第一层池化层
_pool1 = tf.nn.max_pool(_conv1_,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
# 第一层失活层
_pool1_dropout = tf.nn.dropout(_pool1,0.7) # 第二层卷积层
_conv2 = tf.nn.conv2d(_pool1_dropout,weights["wc2"],strides=[1,1,1,1],padding="SAME")
_conv2_ = tf.nn.relu(tf.nn.bias_add(_conv2,biases["bc2"]))
# 第二层池化层
_pool2 = tf.nn.max_pool(_conv2_,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
# 第二层失活层
_pool2_dropout = tf.nn.dropout(_pool2,0.7) # 使用全连接层提取抽象特征
# 全连接层1
_densel = tf.reshape(_pool2_dropout,[-1,weights["wd3"].get_shape().as_list()[0]])
_y1 = tf.nn.relu(tf.add(tf.matmul(_densel,weights["wd3"]),biases["bd3"]))
_y2 = tf.nn.dropout(_y1,0.7)
# 全连接层2
out = tf.add(tf.matmul(_y2,weights["wd4"]),biases["bd4"]) # 损失函数 loss
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y_, logits=out)) # 计算交叉熵 # 优化目标 optimizing
optimizing = tf.train.AdamOptimizer(0.001).minimize(loss) # 使用adam优化器来以0.0001的学习率来进行微调 # 精确度 accuracy
correct_prediction = tf.equal(tf.argmax(Y_, 1), tf.argmax(out, 1)) # 判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) return {
"loss":loss,
"optimizing":optimizing,
"accuracy":accuracy,
"out":out
}

  

批量训练方法:

# 开始准备训练cnn
X = tf.placeholder(tf.float32,[None,28,28,1])
# 这个12属于人脸类别,一共有几个id
Y = tf.placeholder(tf.float32, [None,12]) # 实例化模型
cnn_model = cnn_face_discern_model(X,Y) loss,optimizing,accuracy,out = cnn_model["loss"],cnn_model["optimizing"],cnn_model["accuracy"],cnn_model["out"] # 启动训练模型
bsize = 960/60 with tf.Session() as sess:
# 实例所有参数
sess.run(tf.global_variables_initializer())
for epoch in range(100):
for i in range(15):
x_bsize,y_bsize = x_train[i*60:i*60+60,:,:,:],y_train[i*60:i*60+60,:]
sess.run(optimizing,feed_dict={X:x_bsize,Y:y_bsize}) if (epoch+1)%10==0:
los = sess.run(loss,feed_dict={X:x_test,Y:y_test})
acc = sess.run(accuracy,feed_dict={X:x_test,Y:y_test}) print("epoch:%s loss:%s accuracy:%s"%(epoch,los,acc)) score= sess.run(accuracy,feed_dict={X:x_test,Y:y_test}) y_pred = sess.run(out,feed_dict={X:x_test}) # 这个是类别,测试集预测出来的类别。
y_pred = np.argmax(y_pred,axis=1) print("最后的精确度为:%s"%score)

  

cnn 卷积神经网络 人脸识别的更多相关文章

  1. CNN卷积神经网络人脸识别

    图片总共40个人,每人10张图片,每张图片高57,宽47.共400张图片. 读取图片的py文件 import numpyimport pandasfrom PIL import Imagefrom k ...

  2. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  3. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  4. [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

    Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...

  5. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  6. 3层-CNN卷积神经网络预测MNIST数字

    3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...

  7. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  9. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

随机推荐

  1. C#创建Window服务图解,安装、配置、以及C#操作Windows服务

    一.首先打开VS2013,创建Windows服务项目 二.创建完成后对"Service1.cs"重命名位"ServiceDemo":然后切换到代码视图,写个服务 ...

  2. 3dContactPointAnnotationTool开发日志(十)

      要是那几个状态栏不能拖动的话岂不是显得太呆板了,于是我又参考Unity官方视频教程学习了如何实现拖动状态栏的功能,还挺简单的.   比如说要拖动这个PanelStatus面板,我只让使用者通过拖动 ...

  3. windows批处理学习(call与start)---02

    参考:https://www.cnblogs.com/Braveliu/p/5078283.html 一.call命令总结 (1)call命令简介 语法: call [ [Drive:] [Path] ...

  4. 【Docker 命令】- images命令

    docker images : 列出本地镜像. 语法 docker images [OPTIONS] [REPOSITORY[:TAG]] OPTIONS说明: -a :列出本地所有的镜像(含中间映像 ...

  5. Expected Conditions的常用函数

    Expected Conditions的使用场景有两种  1.直接在断言中使用  2.与WebDriverWait配合使用,动态等待页面上元素出现或者消失 1. title_is: 判断当前页面的ti ...

  6. Java notify的使用

    半路出家学习java, 花了几分钟简单看了.在早上那个例子上稍微改了下, notify 对象上必须使用 synchronized 我的理解是在java synchronized只是个线程同步标志,但是 ...

  7. python函数调用关系图(python call graph)

    由于要重构项目的部分代码,要整理好主要的函数调用关系,不想自己看代码慢慢画出结构,想找出一种通用的,节省人力的方法得出函数间的调用关系图,于是发现以下几个工具.(内网没装好graphviz,还没真正用 ...

  8. SP263 PERIOD - Period

    题目描述 For each prefix of a given string S with N characters (each character has an ASCII code between ...

  9. (七)Redis对键key的操作

    key的全部命令如下: keys pattern # 查找所有符合给定模式pattern的key ,查找所有key 使用[keys *] del key1 key2 ... # 删除给定的一个或多个k ...

  10. (三)Redis列表List操作

    List全部命令如下: lset key index value # 将列表key下标为index的元素的值设置为value,当 index 参数超出范围,或对一个空列表(key不存在)进行lset时 ...