[BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
HINT
Source
Solution
最小生成树的性质:
- 对于每一个$MST$,每一种边权所使用的边数相同
- 所有$MST$中边权$\leq w$的边组成的图的连通性相同
所以首先我们可以用$Kruskal$算出每一种边权使用的边数
之后暴力枚举某种边权所使用的边
因为最多只有$10$条边,所以时间可以接受,当没有这个限制条件时需要用到$Matrix$-$Tree$定理。对,你知道的,我不会这个
顺便试着写了下冰炸鸡并查集按秩合并,稍微伪证了一下发现是$O(nlogn)$的,不过可以撤回?!好像又解锁了什么姿势
#include <bits/stdc++.h>
using namespace std;
struct edge
{
int u, v, w, x;
inline bool operator< (const edge &rhs) const
{
return x < rhs.x;
}
}e[];
struct count
{
int l, r, use;
}g[];
int n, m, fa[], siz[]; int getfa(int x)
{
return fa[x] == x ? x : getfa(fa[x]);
} void link(int u, int v)
{
if(siz[u] > siz[v]) fa[v] = u, siz[u] += siz[v];
else fa[u] = v, siz[v] += siz[u];
} bool Kruskal()
{
int cnt = , u, v;
for(int i = ; i <= m; ++i)
{
u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
++g[e[i].w].use;
if(++cnt == n - ) return true;
}
}
return false;
} int DFS(int w, int i, int k)
{
if(k == g[w].use) return ;
if(i > g[w].r) return ;
int ans = , u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
ans = DFS(w, i + , k + );
fa[u] = u, fa[v] = v;
}
return ans + DFS(w, i + , k);
} int main()
{
int u, v, w, ans;
cin >> n >> m;
for(int i = ; i <= n; ++i)
fa[i] = i, siz[i] = ;
for(int i = ; i <= m; ++i)
{
cin >> u >> v >> w;
e[i] = (edge){u, v, , w};
}
sort(e + , e + m + );
w = ;
for(int i = ; i <= m; ++i)
if(e[i].x == e[i - ].x) e[i].w = w;
else
{
g[w].r = i - ;
e[i].w = ++w;
g[w].l = i;
}
g[w].r = m;
ans = Kruskal();
for(int i = ; i <= n; ++i)
fa[i] = i, siz[i] = ;
for(int i = ; i <= w; ++i)
{
ans = ans * DFS(i, g[i].l, ) % ;
for(int j = g[i].l; j <= g[i].r; ++j)
{
u = getfa(e[j].u), v = getfa(e[j].v);
if(u != v) link(u, v);
}
}
cout << ans << endl;
return ;
}
[BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)的更多相关文章
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...
- [BZOJ1016][JSOI2008]最小生成树计数(结论题)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...
- bzoj1016/luogu4208 最小生成树计数 (kruskal+暴搜)
由于有相同权值的边不超过10条的限制,所以可以暴搜 先做一遍kruskal,记录下来每个权值的边使用的数量(可以离散化一下) 可以证明,对于每个权值,所有的最小生成树中选择的数量是一样的.而且它们连成 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
随机推荐
- Vue.js响应式原理
写在前面 因为对Vue.js很感兴趣,而且平时工作的技术栈也是Vue.js,这几个月花了些时间研究学习了一下Vue.js源码,并做了总结与输出. 文章的原地址:answershuto/learnV ...
- 802.1X和NAP整合实验手册
实验描述 公司内部有多个部门,创建了域的架构,并搭建了DHCP服务器和Radius服务器,要求每个部门都独享一个网段,实现每位用户插上网线后,跳出窗体进行身份验证,如果用户通过验证,根据用户所在的部门 ...
- C# 托管堆和垃圾回收器GC
这里我们讨论的两个东西:托管堆和垃圾回收器,前者是负责创建对象并控制这些对象的生存周期,后者负责回收这些对象. 一.托管堆分配资源 CLR要求所有的对象都从托管堆分配.进程初始化时,CLR划出一个地址 ...
- makefile讲解
仅供自己学习使用 一.Makefile介绍 Makefile 或 makefile: 告诉make维护一个大型程序, 该做什么.Makefile说明了组成程序的各模块间的相互 关系及更新模块时必须进行 ...
- Hibernate学习(一)创建数据表
(1)生成数据库表的创建: // 默认读取hibernate.cfg.xml文件 Configuration cfg = new Configuration().configure(); // 生成并 ...
- hdu 1207 四柱汉诺塔
递推,汉诺塔I的变形. 这题真心没想到正确解法,越想越迷糊.这题看了别人题解过得,以后还是自己多想想,脚步太快并非好事. 贴上分析: 分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]= ...
- WeakHashMap回收时机结合JVM 虚拟机GC的一些理解
一直很想知道WeakHashMap的使用场景,想来想去只能用在高速缓存中,而且缓存的数据还不是特别重要,因为key(key不存在被引用的时候)随时会被回收 所以研究了一下WeakHashMap的回收时 ...
- 基础--Linux环境下一键部署 lnmp
1. 通过x-shell 或者 putty 登录服务器 2. 下载lnmp一键安装包 >wget -c http://soft.vpser.net/lnmp/lnmp1.4.tar.gz # ...
- Luogu P2419 [USACO08JAN]牛大赛Cow Contest
题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a p ...
- Linux忘记开机密码怎么办?
Linux忘记开机密码怎么办?1. 开机ESC/Shift,在出现grub画面时,用上下键选中你平时启动linux的那一项,然后按e键2. 再次用上下键选中你平时启动linux的那一项(类似于kern ...