图像处理------Fuzzy C Means的聚合算法
Fuzzy C-Means聚合算法在图像分割(segmentation)和图像视觉处理中常常被用到聚合算法之
一本文是完全基于JAVA语言实现Fuzzy C-Means聚合算法,并可以运用到图像处理中实现简
单的对象提取。
一:数学原理
在解释数学原理之前,请先看看这个链接算是热身吧
看不懂没关系。我的解释足够详细,小学毕业都可以学会,本人就是小学毕业。
Fuzzy C-means算法主要是比较RGB空间的每个像素值与Cluster中的每个中心点值,最终给
每个像素指派一个值(0~1之间)说明该像素更接近于哪里Cluster的中心点,模糊规则是该像
素对所有cluster的值之和为1。简单的举例:假设图像中有三个聚类cluster1,cluster2,cluster3,
像素A对三个聚类的值分别为a1, a2, a3, 根据模糊规则a1 + a2 + a3 = 1。更进一步,如果a1
最大,则该像素比较接近于Cluster1。计算总的对象值J:
二:算法流程
初始输入参数:
a. 指定的聚类个数numberOfClusters,
b. 指定的最大循环次数maxIteration
c. 指定的最小终止循环差值deltaValue
大致流程如下:
1. 初始化所有像素点值与随机选取每个Cluster的中心点,初始化每个像素点P[i]对应
Cluster的模糊值p[i][k]并计算cluster index。
2. 计算对象值J
3. 计算每个Cluster的颜色值,产生新的图像像素
4. 计算每个像素的对应每个cluster的模糊值,更新每个像素的Cluster Index
5. 再次计算对象值J,并与第二步的对象值相减,如果差值小于deltaValue或者达到最大
循环数,停止计算输出结果图像,否则继续2 ~ 4
三:关键代码解析
欧几里德距离计算方法如下:
- private double calculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)
- {
- // int pa = (p.getPixelColor() >> 24) & 0xff;
- int pr = (p.getPixelColor() >> 16) & 0xff;
- int pg = (p.getPixelColor() >> 8) & 0xff;
- int pb = p.getPixelColor() & 0xff;
- // int ca = (c.getPixelColor() >> 24) & 0xff;
- int cr = (c.getPixelColor() >> 16) & 0xff;
- int cg = (c.getPixelColor() >> 8) & 0xff;
- int cb = c.getPixelColor() & 0xff;
- return Math.sqrt(Math.pow((pr - cr), 2.0) + Math.pow((pg - cg), 2.0) + Math.pow((pb - cb), 2.0));
- }
计算每个像素与每个Cluster的Fuzzy数值的代码如下:
- public void stepFuzzy()
- {
- for (int c = 0; c < this.clusters.size(); c++)
- {
- for (int h = 0; h < this.points.size(); h++)
- {
- double top;
- top = calculateEuclideanDistance(this.points.get(h), this.clusters.get(c));
- if (top < 1.0) top = Eps;
- // sumTerms is the sum of distances from this data point to all clusters.
- double sumTerms = 0.0;
- for (int ck = 0; ck < this.clusters.size(); ck++)
- {
- sumTerms += top / calculateEuclideanDistance(this.points.get(h), this.clusters.get(ck));
- }
- // Then the membership value can be calculated as...
- fuzzyForPixels[h][c] = (double)(1.0 / Math.pow(sumTerms, (2 / (this.fuzzy - 1))));
- }
- };
- this.recalculateClusterMembershipValues();
- }
计算并更新每个像素的Cluster index的代码如下:
- private void recalculateClusterMembershipValues()
- {
- for (int i = 0; i < this.points.size(); i++)
- {
- double max = 0.0;
- double min = 0.0;
- double sum = 0.0;
- double newmax = 0;
- ClusterPoint p = this.points.get(i);
- //Normalize the entries
- for (int j = 0; j < this.clusters.size(); j++)
- {
- max = fuzzyForPixels[i][j] > max ? fuzzyForPixels[i][j] : max;
- min = fuzzyForPixels[i][j] < min ? fuzzyForPixels[i][j] : min;
- }
- //Sets the values to the normalized values between 0 and 1
- for (int j = 0; j < this.clusters.size(); j++)
- {
- fuzzyForPixels[i][j] = (fuzzyForPixels[i][j] - min) / (max - min);
- sum += fuzzyForPixels[i][j];
- }
- //Makes it so that the sum of all values is 1
- for (int j = 0; j < this.clusters.size(); j++)
- {
- fuzzyForPixels[i][j] = fuzzyForPixels[i][j] / sum;
- if (Double.isNaN(fuzzyForPixels[i][j]))
- {
- fuzzyForPixels[i][j] = 0.0;
- }
- newmax = fuzzyForPixels[i][j] > newmax ? fuzzyForPixels[i][j] : newmax;
- }
- // ClusterIndex is used to store the strongest membership value to a cluster, used for defuzzification
- p.setClusterIndex(newmax);
- };
- }
四:运行效果
五:算法源代码
FuzzyCMeansProcessor - 算法类
- package com.gloomyfish.segmentation.fuzzycmeans;
- import java.awt.image.BufferedImage;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Random;
- import com.gloomyfish.filter.study.AbstractBufferedImageOp;
- public class FuzzyCMeansProcessor extends AbstractBufferedImageOp {
- private List<ClusterPoint> points;
- private List<ClusterCentroid> clusters;
- private BufferedImage originalImage;
- private BufferedImage processedImage;
- private double Eps = Math.pow(10, -5);
- private double[][] fuzzyForPixels;
- // Gets or sets objective function
- private double numObj;
- public void setObj(double j) {
- this.numObj = j;
- }
- public double getObj() {
- return this.numObj;
- }
- private float fuzzy; // default is 2
- private int numCluster; // number of clusters in image
- public BufferedImage getResultImage()
- {
- return this.processedImage;
- }
- public FuzzyCMeansProcessor(/*List<ClusterPoint> points, List<ClusterCentroid> clusters, */float fuzzy, BufferedImage myImage, int numCluster)
- {
- points = new ArrayList<ClusterPoint>();
- int width = myImage.getWidth();
- int height = myImage.getHeight();
- int index = 0;
- int[] inPixels = new int[width*height];
- myImage.getRGB( 0, 0, width, height, inPixels, 0, width );
- for (int row = 0; row < myImage.getHeight(); ++row)
- {
- for (int col = 0; col < myImage.getWidth(); ++col)
- {
- index = row * width + col;
- int color = inPixels[index];
- points.add(new ClusterPoint(row, col, color));
- }
- }
- clusters = new ArrayList<ClusterCentroid>();
- //Create random points to use a the cluster centroids
- Random random = new Random();
- for (int i = 0; i < numCluster; i++)
- {
- int randomNumber1 = random.nextInt(width);
- int randomNumber2 = random.nextInt(height);
- index = randomNumber2 * width + randomNumber1;
- clusters.add(new ClusterCentroid(randomNumber1, randomNumber2, inPixels[index]));
- }
- this.originalImage = myImage;
- this.fuzzy = fuzzy;
- this.numCluster = numCluster;
- double diff;
- // Iterate through all points to create initial U matrix
- fuzzyForPixels = new double[this.points.size()][this.clusters.size()];
- for (int i = 0; i < this.points.size(); i++)
- {
- ClusterPoint p = points.get(i);
- double sum = 0.0;
- for (int j = 0; j < this.clusters.size(); j++)
- {
- ClusterCentroid c = this.clusters.get(j);
- diff = Math.sqrt(Math.pow(calculateEuclideanDistance(p, c), 2.0));
- fuzzyForPixels[i][j] = (diff == 0) ? Eps : diff;
- sum += fuzzyForPixels[i][j];
- }
- }
- // re-calculate the membership value for one point of all clusters, and make suer it's sum of value is 1
- recalculateClusterMembershipValues();
- }
- public void calculateClusterCentroids()
- {
- for (int j = 0; j < this.clusters.size(); j++)
- {
- ClusterCentroid clusterCentroid = this.clusters.get(j);
- double l = 0.0;
- clusterCentroid.setRedSum(0);
- clusterCentroid.setBlueSum(0);
- clusterCentroid.setGreenSum(0);
- clusterCentroid.setMemberShipSum(0);
- double redSum = 0;
- double greenSum = 0;
- double blueSum = 0;
- double memebershipSum = 0;
- double pixelCount = 1;
- for (int i = 0; i < this.points.size(); i++)
- {
- ClusterPoint p = this.points.get(i);
- l = Math.pow(fuzzyForPixels[i][j], this.fuzzy);
- int ta = (p.getPixelColor() >> 24) & 0xff;
- int tr = (p.getPixelColor() >> 16) & 0xff;
- int tg = (p.getPixelColor() >> 8) & 0xff;
- int tb = p.getPixelColor() & 0xff;
- redSum += l * tr;
- greenSum += l * tg;
- blueSum += l * tb;
- memebershipSum += l;
- if (fuzzyForPixels[i][j] == p.getClusterIndex())
- {
- pixelCount += 1;
- }
- }
- int clusterColor = (255 << 24) | ((int)(redSum / memebershipSum) << 16) | ((int)(greenSum / memebershipSum) << 8) | (int)(blueSum / memebershipSum);
- clusterCentroid.setPixelColor(clusterColor);
- }
- //update the original image
- // Bitmap tempImage = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);
- BufferedImage tempImage = createCompatibleDestImage( originalImage, null );
- int width = tempImage.getWidth();
- int height = tempImage.getHeight();
- int index = 0;
- int[] outPixels = new int[width*height];
- for (int j = 0; j < this.points.size(); j++)
- {
- for (int i = 0; i < this.clusters.size(); i++)
- {
- ClusterPoint p = this.points.get(j);
- if (fuzzyForPixels[j][i] == p.getClusterIndex())
- {
- int row = (int)p.getX(); // row
- int col = (int)p.getY(); // column
- index = row * width + col;
- outPixels[index] = this.clusters.get(i).getPixelColor();
- }
- }
- }
- // fill the pixel data
- setRGB( tempImage, 0, 0, width, height, outPixels );
- processedImage = tempImage;
- }
- /// <summary>
- /// Perform one step of the algorithm
- /// </summary>
- public void stepFuzzy()
- {
- for (int c = 0; c < this.clusters.size(); c++)
- {
- for (int h = 0; h < this.points.size(); h++)
- {
- double top;
- top = calculateEuclideanDistance(this.points.get(h), this.clusters.get(c));
- if (top < 1.0) top = Eps;
- // sumTerms is the sum of distances from this data point to all clusters.
- double sumTerms = 0.0;
- for (int ck = 0; ck < this.clusters.size(); ck++)
- {
- sumTerms += top / calculateEuclideanDistance(this.points.get(h), this.clusters.get(ck));
- }
- // Then the membership value can be calculated as...
- fuzzyForPixels[h][c] = (double)(1.0 / Math.pow(sumTerms, (2 / (this.fuzzy - 1))));
- }
- };
- this.recalculateClusterMembershipValues();
- }
- public double calculateObjectiveFunction()
- {
- double Jk = 0.0;
- for (int i = 0; i < this.points.size();i++)
- {
- for (int j = 0; j < this.clusters.size(); j++)
- {
- Jk += Math.pow(fuzzyForPixels[i][j], this.fuzzy) * Math.pow(this.calculateEuclideanDistance(points.get(i), clusters.get(j)), 2);
- }
- }
- return Jk;
- }
- private void recalculateClusterMembershipValues()
- {
- for (int i = 0; i < this.points.size(); i++)
- {
- double max = 0.0;
- double min = 0.0;
- double sum = 0.0;
- double newmax = 0;
- ClusterPoint p = this.points.get(i);
- //Normalize the entries
- for (int j = 0; j < this.clusters.size(); j++)
- {
- max = fuzzyForPixels[i][j] > max ? fuzzyForPixels[i][j] : max;
- min = fuzzyForPixels[i][j] < min ? fuzzyForPixels[i][j] : min;
- }
- //Sets the values to the normalized values between 0 and 1
- for (int j = 0; j < this.clusters.size(); j++)
- {
- fuzzyForPixels[i][j] = (fuzzyForPixels[i][j] - min) / (max - min);
- sum += fuzzyForPixels[i][j];
- }
- //Makes it so that the sum of all values is 1
- for (int j = 0; j < this.clusters.size(); j++)
- {
- fuzzyForPixels[i][j] = fuzzyForPixels[i][j] / sum;
- if (Double.isNaN(fuzzyForPixels[i][j]))
- {
- fuzzyForPixels[i][j] = 0.0;
- }
- newmax = fuzzyForPixels[i][j] > newmax ? fuzzyForPixels[i][j] : newmax;
- }
- // ClusterIndex is used to store the strongest membership value to a cluster, used for defuzzification
- p.setClusterIndex(newmax);
- };
- }
- private double calculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)
- {
- // int pa = (p.getPixelColor() >> 24) & 0xff;
- int pr = (p.getPixelColor() >> 16) & 0xff;
- int pg = (p.getPixelColor() >> 8) & 0xff;
- int pb = p.getPixelColor() & 0xff;
- // int ca = (c.getPixelColor() >> 24) & 0xff;
- int cr = (c.getPixelColor() >> 16) & 0xff;
- int cg = (c.getPixelColor() >> 8) & 0xff;
- int cb = c.getPixelColor() & 0xff;
- return Math.sqrt(Math.pow((pr - cr), 2.0) + Math.pow((pg - cg), 2.0) + Math.pow((pb - cb), 2.0));
- }
- @Override
- public BufferedImage filter(BufferedImage src, BufferedImage dest) {
- return processedImage;
- }
- }
;
; // (int)numericUpDown2.Value;
六:Fuzzy C-means不足之处
需要提供额外的参数,不能自动识别Cluster,运行时间比较长。
图像处理------Fuzzy C Means的聚合算法的更多相关文章
- Fuzzy C Means 算法及其 Python 实现——写得很清楚,见原文
Fuzzy C Means 算法及其 Python 实现 转自:http://note4code.com/2015/04/14/fuzzy-c-means-%E7%AE%97%E6%B3%95%E5% ...
- Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法
原文:Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法 前面章节中介绍了二值图像的形态学算法,这里讲一下灰度图的形态学算法,主要是公式,代码略. 1,膨胀算法 2,腐蚀算法 3 ...
- 图像处理之基础---彩色转灰度算法优化rgb to yuv
File: StudyRGB2Gray.txtName: 彩色转灰度算法彻底学习Author: zyl910Version: V1.0Updata: 2006-5- ...
- Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法
原文:Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法 [函数名称] 高斯平滑滤波器 GaussFilter(WriteableBitmap src,int r ...
- Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法
原文:Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法 [函数名称] 部分彩色保留函数 WriteableBitmap PartialcolorProcess ...
- Win8 Metro(C#)数字图像处理--2.44图像油画效果算法
原文:Win8 Metro(C#)数字图像处理--2.44图像油画效果算法 [函数名称] 图像油画效果 OilpaintingProcess(WriteableBitmap src ...
- Win8 Metro(C#)数字图像处理--2.47人脸红眼去除算法
原文:Win8 Metro(C#)数字图像处理--2.47人脸红眼去除算法 [函数名称] 红眼去除 RedeyeRemoveProcess(WriteableBitmap src) ...
- Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法
原文:Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法 [函数名称] 二值图像轮廓提取 ContourExtraction(WriteableBitm ...
- Win8 Metro(C#)数字图像处理--2.43图像马赛克效果算法
原文:Win8 Metro(C#)数字图像处理--2.43图像马赛克效果算法 [函数名称] 图像马赛克效果 MosaicProcess(WriteableBitmap src, i ...
随机推荐
- 洛谷 [P2024] 食物链
并查集 这是一道比较特殊的并查集,开一个三倍的数组, 1-n保存同类,n-n×2保存猎物,n2~n3保存天敌: #include <iostream> #include <cstdi ...
- 夏令营讲课内容整理 Day 7.
Day7是夏令营的最后一天,这一天主要讲了骗分技巧和往年经典的一些NOIP试题以及比赛策略. 这天有个小插曲,上午的day7T3是一道和树有关的题,我是想破脑袋也想不出来,正解写不出来就写暴力吧,暴力 ...
- django-rest-framework之请求与响应
前言:在上一篇文章,已经实现了访问指定URL就返回了指定的数据,这也体现了RESTful API的一个理念,每一个URL代表着一个资源.当然我们还知道RESTful API的另一个特性就是,发送不同的 ...
- javascript 欺骗词法作用域
如果词法作用域完全由写代码期间函数所声明的位置来定义,怎样才能在运行时来"修改"(也可以说欺骗)词法作用域呢? JavaScript 中有两种机制来实现这个目的.社区普遍认为 ...
- C++函数返回值发生的对象复制
最近用QT做一个监控系统的项目,需要显示目标的运动轨迹,每次目标移动后,就在目标的轨迹中(用vector记录)添加一条新轨迹. 但是在运行中画面里一直不出现轨迹,经过调试发现是记录轨迹的函数出错了. ...
- python学习:递归列出目录里的文件
#!/usr/bin/python import os import sys def print_files(path): lsdir = os.listdir(path) d ...
- Docker Centos7 下建立 Docker 桥接网络
为什么要让docker桥接物理网络? docker默认提供了一个隔离的内网环境,启动时会建立一个docker0的虚拟网卡,每个容器都是连接到docker0网卡上的.而docker0的ip段为172.1 ...
- python并发编程之多进程(二):互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型
一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终 ...
- WinForm中ClickOnce发布至广域网
ClickOnce智能客户端,是微软提供比较早的一项技术,用于实现WinForm开发的应用程序能够自动更新,省去给每台客户端升级带来的困扰. 从网上的贴子里看,有的说好用,有的说不好用.客观的说,微软 ...
- applicationContext.xml最基本配置文件
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...