LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
描述:
有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益。
假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含的药材也等于$K$时才会有效果。
求最小收益,收益可能是负的。保证有完美匹配。
分析:
先把所有权值取相反数求最大收益,因为最小收益看着很难受。
$S$->减肥药($inf$+收益),减肥药->药材($inf$),药材->$T$($inf$)。
然后求最小割,答案就是$S$连出去的边的容量和-最小割。
性质1:割中间的边不会更优。
割左边的边表示不选这种减肥药,割右边的边表示选这种药材。
性质2:加上$inf$后保证左边选取的点数等于右边选取的点数。
性质3:题目存在完美匹配。因此答案一定小于$inf$
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 2050
#define M 600050
#define inf 100000000
#define S (n*2+1)
#define T (n*2+2)
typedef long long ll;
int head[N],to[M],nxt[M],cnt=1,n,m,dep[N],Q[N],l,r;
ll flow[M],sum;
inline void add(int u,int v,ll f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
dep[S]=1; l=r=0; Q[r++]=S;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
ll dfs(int x,ll mf) {
if(x==T) return mf;
int i;
ll nf=0;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
ll tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
ll f;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
printf("%lld\n",-sum);
}
int main() {
scanf("%d",&n);
int i,x,y;
for(i=1;i<=n;i++) {
scanf("%d",&x);
while(x--) {
scanf("%d",&y);
add(i,y+n,inf);
}
}
for(i=1;i<=n;i++) scanf("%d",&x),x=-x,sum+=inf+x,add(S,i,inf+x),add(i+n,T,inf);
dinic();
}

LOJ_6045_「雅礼集训 2017 Day8」价 _最小割的更多相关文章
- LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)
题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...
- 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)
「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...
- loj6045 「雅礼集训 2017 Day8」价
我们考虑最小割. 我一开始觉得是裸的最小割,就直接S到每个减肥药连up+p[i]的边,减肥药到药材连inf边,药材到T连up,然后得到了40分的好成绩. 之后我发现这是一个假的最小割,最小割割的是代价 ...
- 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)
点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...
- 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价
又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...
- loj #6046. 「雅礼集训 2017 Day8」爷
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...
- [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]
题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...
- LOJ#6046. 「雅礼集训 2017 Day8」爷(分块)
题面 传送门 题解 转化为\(dfs\)序之后就变成一个区间加,区间查询\(k\)小值的问题了,这显然只能分块了 然而我们分块之后需要在块内排序,然后二分\(k\)小值并在块内二分小于它的元素--一个 ...
- LOJ#6044. 「雅礼集训 2017 Day8」共(Prufer序列)
题面 传送门 题解 答案就是\(S(n-k,k)\times {n-1\choose k-1}\) 其中\(S(n,m)\)表示左边\(n\)个点,右边\(m\)个点的完全二分图的生成树个数,它的值为 ...
随机推荐
- Cloud Carousel
<div class="carousel1" id="carousel1" > <a href="#"><im ...
- jBPM4工作流应用开发指南
首先十分感谢作者给我这个机会在他的作品即将问世之前做一些感想,也正好让我能在忙碌中抽空回顾一下这么多年在技术平台方面走过的路以及在Workflow方面的点点滴滴.因为本书是介绍jBPM的专业书籍,所以 ...
- JMM规范
JMM规范: The rules for happens-before are: Program order rule. Each action in a thread happens-before ...
- Python Django开发中XSS内容过滤问题的解决
from:http://stackoverflow.com/questions/699468/python-html-sanitizer-scrubber-filter 通过下面这个代码就可以把内容过 ...
- 关于运行springboot时报Unregistering JMX-exposed beans on shutdown的解决方案
其实这个错误并不影响程序的运行,但是对于处女座的同仁来说,看到报错难免不舒服,那么看看解决方法,此错误信息的意思是说:在关机状态下未注册jmx暴露的bean. 解决方案是在入口类上加上 @Enabl ...
- 用python抓取智联招聘信息并存入excel
用python抓取智联招聘信息并存入excel tags:python 智联招聘导出excel 引言:前一阵子是人们俗称的金三银四,跳槽的小朋友很多,我觉得每个人都应该给自己做一下规划,根据自己的进步 ...
- git添加本地的项目到git远程管理仓库
目标:将本地存在的项目添加到git远程仓库管理 步骤: 1. 需要一个git远程仓库管理地址 例如:https://github.com/xingfupeng/test.git git@github. ...
- Dubbo分布式服务框架入门使用
概念: Provider 暴露服务方称之为"服务提供者". Consumer 调用远程服务方称之为"服务消费者". Registry 服务注册与发现的中心目录服 ...
- SOFA 源码分析 — 负载均衡和一致性 Hash
前言 SOFA 内置负载均衡,支持 5 种负载均衡算法,随机(默认算法),本地优先,轮询算法,一致性 hash,按权重负载轮询(不推荐,已被标注废弃). 一起看看他们的实现(重点还是一致性 hash) ...
- jvm GC
JavaGC.新生代.老年代 Java 中的堆是 JVM所管理的最大的一块内存空间,主要用于存放各种类的实例对象. 在 Java 中,堆被划分成两个不同的区域:新生代 ( Young ).老年代 ( ...