题目描述

小 x伤心的走上了 Star way to heaven。

到天堂的道路是一个笛卡尔坐标系上一个 n*m的长方形通道 顶点在0,0 和 。

小 n,m 从最左边任意一点进入,从右边任意一点走到天堂,最左最右的距离n为 ,上下边界距离m为 。

其中长方形有 k个 ,每个k 都有一个整点坐标,star的大小可以忽略不计。

每个star 以及长方形上下两个边缘宇宙的边界都有引力,所以为了成功到达 小w 离他们越远越好。

请问小w走到终点的路径上,距离所有星星以及边界的最小距离最大值可以为多少?

输入格式
一行三个整数 。
接下来k行,每行两个整数 表示一个点的坐标。

输出格式
一行一个数表示答案。保留到小数点后9位。

样例
样例输入
10 5 2
1 1
2 3
样例输出
1.118033989

首先,我们要先简化题目

给出一个个星星,以某一个半径,封住一列,使其变为两部分,求这个半径最小为多少

题目分析

我们可以二分ans,然后用dfs或bfs来进行判断,但是,实际上,用这个方法会超时

于是,我们可以换一个思路,其实,我们可以从最上面为起点,构造最小生成树,如果说,
一个点的半径能够触碰到最下面,那就说明,已经成功封闭了

那具体该如何操作呢?

这里不能用常用的kruskal,而是用比较冷门的prim,首先,每一个初始值为每一个点到最上面的距离,然后取出最小的也就是离上面最近的,然后,用这一个点,更新每一点的最低值,其中,算出最大值即可

哪有什么时候结束呢,我们可以在开一个,为最上面到最下面的最小值,如果说,这个值被选中了,就说明已经被封闭来,直接输出即可,但是求的是半径,所以要/2

疑问?m不该是列吗,为什么变成来上下边界距离m

#include<bits/stdc++.h>
using namespace std;
int n;
double m;
int k;
double x[10005];
double y[10005];
double dist[100005];
int vis[10005];
double js(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
scanf("%d %lf %d",&n,&m,&k);
for(int i=1;i<=k;i++)
{
scanf("%lf %lf",&x[i],&y[i]);
}
for(int i=1;i<=k;i++)
{
dist[i]=m-y[i];
}
dist[k+1]=m;
double ans=-1;
dist[0]=1000000;
for(int j=1;j<=k+1;j++)
{
int mq=0;
for(int i=1;i<=k+1;i++)
{
if(!vis[i]&&dist[i]<dist[mq]){
mq=i;
}
}
ans=max(dist[mq],ans);
if(mq==k+1)
{
printf("%.9lf",ans/2);
return 0;
}
for(int i=1;i<=k;i++)
{
dist[i]=min(dist[i],js(x[i],y[i],x[mq],y[mq]));
}
dist[k+1]=min(dist[k+1],y[mq]);
vis[mq]=1;
}
}

Star Way To Heaven的更多相关文章

  1. [CSP-S模拟测试]:Star Way To Heaven(最小生成树Prim)

    题目描述 小$w$伤心的走上了$Star\ way\ to\ heaven$. 到天堂的道路是一个笛卡尔坐标系上一个$n\times m$的长方形通道(顶点在$(0,0)$和$(n,m)$),小$w$ ...

  2. 7.15考试总结(NOIP模拟16)[Star Way To Heaven·God Knows·Lost My Music]

    败者死于绝望,胜者死于渴望. 前言 一看这个题就来者不善,对于第一题第一眼以为是一个大模拟,没想到是最小生成树. 对于第二题,先是看到了状压可以搞到的 20pts 然后对着暴力一顿猛调后来发现是题面理 ...

  3. NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」

    T1:Star Way To Heaven 基本思路:   最小生成树.   假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...

  4. 题解 Star Way To Heaven

    传送门 这整场都不会--这题想二分不会check 其实check很好写,考虑一个mid的实际意义 即为check在不靠近每个star及边界mid距离内的前提下,能不能到达\((n,m)\) 其实可以转 ...

  5. 20190817-T1-LOJ6322「雅礼国庆 2017 Day6」Star Way To Heaven

    写这篇题解是因为作者太蒻已经忘了最小生成树了. <题面> 这个题还真是想不到最小生成树. $80\%$算法 复杂度:$\Theta(k^2 \log N )$ 用了二分答案(明显答案具有单 ...

  6. 「模拟8.17」star way to heaven(并查集,最小生成树)

    80分打法 首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆 我们进行并查集维护,维护相交的圆的边界 最后判断是否存在圆将上下边界覆盖,如有证明不行 1 #include<iost ...

  7. NOIP 模拟 $16\; \rm Star Way To Heaven$

    题解 \(by\;zj\varphi\) 看懂题!!! 从最左穿到最右,一定会经过两个星星之间或星星和边界之间,那么我们穿过时当前最优一定是走中点 而我们要求最小的距离最大,那么我们将所有星星和边界( ...

  8. NOIP模拟测试24「star way to hevaen·lost my music」

    star way to heaven 题解 大致尝试了一下并查集,记忆化搜索,最小生成树 最小生成树是正解,跑最小生成树然后找到最大的值 欧几里德距离最小生成树学习 prim楞跑 至于为什么跑最小生成 ...

  9. NOIP模拟 24

    连续爆炸的开端. 从这一场开始我没状态了 T1 star way to heaven 受强降雨boboQQQ影响,我一直认为这是一道和凸包有关的计算几何题 很快就弃了,除了期望没做过带实数的题,所以吓 ...

随机推荐

  1. 【C/C++】例题3-5 生成元/算法竞赛入门经典/数组与字符串

    [题目] x+x的各位数之和为y,x为y的生成元. 求10万以内的n的最小生成元,无解输出0. [解答] 这是我根据自己的想法最初写的代码: #include<cstdio> #inclu ...

  2. Python enumerate():使用计数器简化循环

    摘要:当您需要计数和迭代中的值时,Pythonenumerate()允许您编写 Pythonicfor循环.最大的优点enumerate()是它返回一个带有计数器和值的元组,因此您不必自己增加计数器. ...

  3. Groovy获取Bean两种方式(奇淫技巧操作)

    前言:请各大网友尊重本人原创知识分享,谨记本人博客:南国以南i 背景: 在Java代码中当我们需要一个Bean对象,通常会使用spring中@Autowired注解,用来自动装配对象. 在Groovy ...

  4. gitlab 集成openldap

    Setting up LDAP sign-in If you have an LDAP directory service such as Active Directory, you can conf ...

  5. 设计风格之REST

    一.简介 REST简介 REST 是英文 representational state transfer(表象性状态转变)或者表述性状态转 移;Rest 是 web 服务的一种架构风格;使用 HTTP ...

  6. 『学了就忘』Linux系统管理 — 81、进程管理介绍

    目录 1.进程与线程的概念 2.什么是进程管理 3.进程管理的作用 4.Linux进程的几种状态 5.进程与线程的关系 (1)线程与进程的关系 (2)总结 1.进程与线程的概念 来源百度百科: 进程( ...

  7. mysql深度优化与理解(迄今为止读到最优秀的mysql博客)

    转载:https://www.cnblogs.com/shenzikun1314/p/6396105.html 本篇深入了解查询优化和服务器的内部机制,了解MySql如何执行特定查询,从中也可以知道如 ...

  8. Mac配置apache,mysql

    ===========Apache=============================== 1. 启动关闭Apache MAC系统已经预装了apache,启动.关闭.查看版本等命令如下: 启动a ...

  9. exit_hook在pwn题中的应用

    以前只接触过malloc_hook,free_hook,大概意思就是在调用malloc和free的时候会先看看里面有没有东西,有的话就会执行.以前在看一些师傅们博客的时候有看到过exit_hook,前 ...

  10. IDT系统中断描述表以及绕过Xurtr检测的HOOK姿势

    什么是中断?  指当出现需要时,CPU暂时停止当前程序的执行转而执行处理新情况的程序和执行过程.即在程序运行过程中,系统出现了一个必须由CPU立即处理的情况,此时,CPU暂时中止程序的执行转而处理这个 ...