Star Way To Heaven
题目描述
小 x伤心的走上了 Star way to heaven。
到天堂的道路是一个笛卡尔坐标系上一个 n*m的长方形通道 顶点在0,0 和 。
小 n,m 从最左边任意一点进入,从右边任意一点走到天堂,最左最右的距离n为 ,上下边界距离m为 。
其中长方形有 k个 ,每个k 都有一个整点坐标,star的大小可以忽略不计。
每个star 以及长方形上下两个边缘宇宙的边界都有引力,所以为了成功到达 小w 离他们越远越好。
请问小w走到终点的路径上,距离所有星星以及边界的最小距离最大值可以为多少?
输入格式
一行三个整数 。
接下来k行,每行两个整数 表示一个点的坐标。
输出格式
一行一个数表示答案。保留到小数点后9位。
样例
样例输入
10 5 2
1 1
2 3
样例输出
1.118033989
首先,我们要先简化题目
给出一个个星星,以某一个半径,封住一列,使其变为两部分,求这个半径最小为多少
题目分析
我们可以二分ans,然后用dfs或bfs来进行判断,但是,实际上,用这个方法会超时
于是,我们可以换一个思路,其实,我们可以从最上面为起点,构造最小生成树,如果说,
一个点的半径能够触碰到最下面,那就说明,已经成功封闭了
那具体该如何操作呢?
这里不能用常用的kruskal,而是用比较冷门的prim,首先,每一个初始值为每一个点到最上面的距离,然后取出最小的也就是离上面最近的,然后,用这一个点,更新每一点的最低值,其中,算出最大值即可
哪有什么时候结束呢,我们可以在开一个,为最上面到最下面的最小值,如果说,这个值被选中了,就说明已经被封闭来,直接输出即可,但是求的是半径,所以要/2
疑问?m不该是列吗,为什么变成来上下边界距离m
#include<bits/stdc++.h>
using namespace std;
int n;
double m;
int k;
double x[10005];
double y[10005];
double dist[100005];
int vis[10005];
double js(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
scanf("%d %lf %d",&n,&m,&k);
for(int i=1;i<=k;i++)
{
scanf("%lf %lf",&x[i],&y[i]);
}
for(int i=1;i<=k;i++)
{
dist[i]=m-y[i];
}
dist[k+1]=m;
double ans=-1;
dist[0]=1000000;
for(int j=1;j<=k+1;j++)
{
int mq=0;
for(int i=1;i<=k+1;i++)
{
if(!vis[i]&&dist[i]<dist[mq]){
mq=i;
}
}
ans=max(dist[mq],ans);
if(mq==k+1)
{
printf("%.9lf",ans/2);
return 0;
}
for(int i=1;i<=k;i++)
{
dist[i]=min(dist[i],js(x[i],y[i],x[mq],y[mq]));
}
dist[k+1]=min(dist[k+1],y[mq]);
vis[mq]=1;
}
}
Star Way To Heaven的更多相关文章
- [CSP-S模拟测试]:Star Way To Heaven(最小生成树Prim)
题目描述 小$w$伤心的走上了$Star\ way\ to\ heaven$. 到天堂的道路是一个笛卡尔坐标系上一个$n\times m$的长方形通道(顶点在$(0,0)$和$(n,m)$),小$w$ ...
- 7.15考试总结(NOIP模拟16)[Star Way To Heaven·God Knows·Lost My Music]
败者死于绝望,胜者死于渴望. 前言 一看这个题就来者不善,对于第一题第一眼以为是一个大模拟,没想到是最小生成树. 对于第二题,先是看到了状压可以搞到的 20pts 然后对着暴力一顿猛调后来发现是题面理 ...
- NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」
T1:Star Way To Heaven 基本思路: 最小生成树. 假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...
- 题解 Star Way To Heaven
传送门 这整场都不会--这题想二分不会check 其实check很好写,考虑一个mid的实际意义 即为check在不靠近每个star及边界mid距离内的前提下,能不能到达\((n,m)\) 其实可以转 ...
- 20190817-T1-LOJ6322「雅礼国庆 2017 Day6」Star Way To Heaven
写这篇题解是因为作者太蒻已经忘了最小生成树了. <题面> 这个题还真是想不到最小生成树. $80\%$算法 复杂度:$\Theta(k^2 \log N )$ 用了二分答案(明显答案具有单 ...
- 「模拟8.17」star way to heaven(并查集,最小生成树)
80分打法 首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆 我们进行并查集维护,维护相交的圆的边界 最后判断是否存在圆将上下边界覆盖,如有证明不行 1 #include<iost ...
- NOIP 模拟 $16\; \rm Star Way To Heaven$
题解 \(by\;zj\varphi\) 看懂题!!! 从最左穿到最右,一定会经过两个星星之间或星星和边界之间,那么我们穿过时当前最优一定是走中点 而我们要求最小的距离最大,那么我们将所有星星和边界( ...
- NOIP模拟测试24「star way to hevaen·lost my music」
star way to heaven 题解 大致尝试了一下并查集,记忆化搜索,最小生成树 最小生成树是正解,跑最小生成树然后找到最大的值 欧几里德距离最小生成树学习 prim楞跑 至于为什么跑最小生成 ...
- NOIP模拟 24
连续爆炸的开端. 从这一场开始我没状态了 T1 star way to heaven 受强降雨boboQQQ影响,我一直认为这是一道和凸包有关的计算几何题 很快就弃了,除了期望没做过带实数的题,所以吓 ...
随机推荐
- 【Java基础】JAVA中优先队列详解
总体介绍 优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素).这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序( ...
- TCP协议三步挥手与四步挥手
关于TCP协议 TCP(Transmission Control Protocol, 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议.与之对应的是UDP(User Datagram ...
- html上传图片的预览功能实现
表单代码(仅取上传文件部分): <input class="selectImg" style="position:absolute;opacity: 0;width ...
- Linux目录终章,单用户模式修改密码、环境变量、第三方软件安装
目录 今日内容概要 内容详细 解析映射文件 磁盘挂载文件 开机加载脚本 系统启动级别 使用单用户模式修改密码 变量加载文件 登录提示信息 第三方软件安装目录(编译安装目录) 系统日志目录 保存系统运行 ...
- Mysql资料 xtrabackup
目录 一.简介 原理 优缺点 二.安装 三.日常使用 备份所有库 增量备份 远程备份 四.参数 一.简介 原理 其实XtraBackup也是基于INNODB的 crash-recovery功能来实现的 ...
- [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC
[源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x0 ...
- Java值引用和对象引用区别Demo
转自:http://blog.csdn.net/gundsoul/article/details/4927404 以前就知道JAVA对象分对象引用和值引用,并且还知道8种基础数据类型,即引用时是值引用 ...
- Jetpack Compose的Modifier顺序问题
一:前言 困惑起源于这段代码 Composable.clickable(点击1).clickable(点击2).size(100.dp).size(200.dp){ ............... } ...
- C语言程序设计:二分查找(折半查找)
目录 C语言程序设计:二分查找(折半查找) 1.什么是二分查找 2.二分查找的优点 3.二分查找的缺点 4.二分查找原理 5.源代码实现 6.后话 C语言程序设计:二分查找(折半查找) 1.什么是二分 ...
- CF721B Passwords 题解
Content 有一天,小 V 突然忘记了他在 Codehorses 的网站上的密码.但是他有所有网站上的 \(n\) 个密码 \(\{s_i\}_{i=1}^n\),所以他开始一个一个试.他会先从长 ...