[bzoj1115]石子游戏
考虑令$bi=ai-a_{i-1}$,那么每一次操作相当于让$bi-=x$且$b_{i+1}+=x$,相当于从i向i+1移动x个石子,那么容易发现偶数堆没有用处,因为另一方可以用同样的操作,因此问题相当于从n往前的奇数堆的nim游戏,异或即可

1 #include<bits/stdc++.h>
2 using namespace std;
3 int t,n,ans,a[1005],b[1005];
4 int main(){
5 scanf("%d",&t);
6 while (t--){
7 scanf("%d",&n);
8 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
9 for(int i=1;i<=n;i++)b[i]=a[i]-a[i-1];
10 ans=0;
11 for(int i=n;i>0;i-=2)ans^=b[i];
12 if (ans)printf("TAK\n");
13 else printf("NIE\n");
14 }
15 }
[bzoj1115]石子游戏的更多相关文章
- Bzoj1115 石子游戏Kam
这是道权限题,差评. 题目说明引自ZYF-ZYF Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证 ...
- 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈
[BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...
- [bzoj1115][POI2009]石子游戏Kam_博弈论_阶梯博弈
石子游戏 Kam bzoj-1115 POI-2009 题目大意:给定n堆石子,两个人轮流取石子.每堆石子的个数都不少于前一堆石子.每次取后也必须维持这个性质.问谁有必胜策略. 注释:$1\le ca ...
- [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...
- BZOJ 1115: [POI2009]石子游戏Kam
1115: [POI2009]石子游戏Kam Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 545[Submit][Stat ...
- Games:取石子游戏(POJ 1067)
取石子游戏 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37662 Accepted: 12594 Descripti ...
- {CSDN}{英雄会}{砍树、石子游戏}
砍树 思路: 可以将题目意图转化为:给定一棵树,求其中最接近总权值一半的子树. DFS求每个节点的所有子节点的权值和,遍历每个节点,最接近总权值一半的即为答案.复杂度O(N). 石子游戏: 思路: 一 ...
- HDU 2176 取(m堆)石子游戏(Nim)
取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
随机推荐
- 解决VSCODE"因为在此系统上禁止运行脚本"报错
在VSCODE中使用yarn,结果报错: 找了下原因,是因为PowerShell执行策略的问题. 解决方法: 以管理员身份运行vscode; 执行:get-ExecutionPolicy,显示R ...
- MySQL初步学习——2021.09.27每日总结,第四周周一
(1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天学习了SQL语句的分类: SQL语句很多,分为 1.DQL:数据查询语言(凡是带有select关键字的都是查询语句) 2 ...
- LOJ6469 Magic(trie)
纪念我菜的真实的一场模拟赛 首先看到这个题目,一开始就很毒瘤.一定是没有办法直接做的. 我们考虑转化问题 假设,我们选择枚举\(x\),其中\(x\)是\(10\)的若干次方,那么我们只需要求有多少对 ...
- SPOJ2939 QTREE5(LCT维护子树信息)
QWQ嘤嘤嘤 此题正规题解应该是边分治??或者是树剖(总之不是LCT) 但是我这里还是把它当成一个LCT题目来做 首先,这个题的重点还是在update上 因为有\(makeroot\)这个操作的存在, ...
- sprintboot整合mybatis查询不出数据
数据库有数据,程序没有任何报错,但是查询结果没有数据,list显示[null,nul]. 检查了sql语句,以及controller.service.mapper,检查没发现问题,怀疑是字段映射问题. ...
- Go语言核心36讲(Go语言进阶技术一)--学习笔记
07 | 数组和切片 我们这次主要讨论 Go 语言的数组(array)类型和切片(slice)类型. 它们的共同点是都属于集合类的类型,并且,它们的值也都可以用来存储某一种类型的值(或者说元素). 不 ...
- JVM详解(五)——运行时数据区-方法区
一.概述 1.介绍 <Java虚拟机规范>中明确说明:尽管所有的方法区在逻辑上属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩.但对于HotSpot JVM而言,方法 ...
- 微信小程序中路由跳转
一.是什么 微信小程序拥有web网页和Application共同的特征,我们的页面都不是孤立存在的,而是通过和其他页面进行交互,来共同完成系统的功能 在微信小程序中,每个页面可以看成是一个pageMo ...
- Kali安装OWASP
我是2019版的kali,里面并没有自带OWASP工具,因为OWASP不再更新的因素,所以新版kali将它移除了 安装OWASP apt-get install zaproxy #以下都是安装软件时 ...
- ZK(ZooKeeper)分布式锁实现
点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你. 本文中案例都会在上传到git上,请放心浏览 git地址:https://github.com/muxiaonong/Zo ...