最近在导入某站数据(正经需求),看到他们的登录需要验证码,

本来并不想折腾的,然而Cookie有效期只有一天。

已经收到了几次夜间报警推送之后,实在忍不住。

得嘞,还是得研究下模拟登录。

于是,秃头了两个小时gang出来了。


预警

  • 二值化、普通降噪、8邻域降噪
  • tesseract、tesserocr、PIL

如果都了解这些东西,这文章就不用看了,直接跳到参考文献咯。

代码地址:https://github.com/liguobao/python-verify-code-ocr


开始搞事

批量下载验证码图片

import shutil
import requests
from loguru import logger for i in range(100):
url = 'http://xxxx/create/validate/image'
response = requests.get(url, stream=True)
with open(f'./imgs/{i}.png', 'wb') as out_file:
response.raw.decode_content = True
shutil.copyfileobj(response.raw, out_file)
logger.info(f"download {i}.png successfully.")
del response

第一步,直接上识别代码看看效果。

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show()
img_l = img.convert("L")# 灰阶图
img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")

毫无疑问,无论是原图还是灰阶图,一无所有。


折腾降噪、去干扰

Python图片验证码降噪 - 8邻域降噪

第一个找到有用的文章是这个,没记错的话几年前也看到过。

from PIL import Image
# https://www.cnblogs.com/jhao/p/10345853.html Python图片验证码降噪 — 8邻域降噪 def noise_remove_pil(image_name, k):
"""
8邻域降噪
Args:
image_name: 图片文件命名
k: 判断阈值
Returns:
""" def calculate_noise_count(img_obj, w, h):
"""
计算邻域非白色的个数
Args:
img_obj: img obj
w: width
h: height
Returns:
count (int)
"""
count = 0
width, height = img_obj.size
for _w_ in [w - 1, w, w + 1]:
for _h_ in [h - 1, h, h + 1]:
if _w_ > width - 1:
continue
if _h_ > height - 1:
continue
if _w_ == w and _h_ == h:
continue
if img_obj.getpixel((_w_, _h_)) < 230: # 这里因为是灰度图像,设置小于230为非白色
count += 1
return count img = Image.open(image_name)
# 灰度
gray_img = img.convert('L') w, h = gray_img.size
for _w in range(w):
for _h in range(h):
if _w == 0 or _h == 0:
gray_img.putpixel((_w, _h), 255)
continue
# 计算邻域非白色的个数
pixel = gray_img.getpixel((_w, _h))
if pixel == 255:
continue if calculate_noise_count(gray_img, _w, _h) < k:
gray_img.putpixel((_w, _h), 255)
return gray_img if __name__ == '__main__':
image = noise_remove_pil("./imgs/1.png", 4)
image.show()

跑起来看下效果。

啧啧啧,很是可以。

不过扔过去识别...

依旧不太行。

研读了一下代码,有了思路。


新思路

这边的干扰线是从某个点发出来的红色线条,

其实我只需要把红色的像素点都干掉,这个线条也会被去掉。

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show() # 尝试去掉红像素点
w, h = img.size
for _w in range(w):
for _h in range(h):
o_pixel = img.getpixel((_w, _h))
if o_pixel == (255, 0, 0):
img.putpixel((_w, _h), (255, 255, 255))
img.show() img_l = img.convert("L")
# img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")

看起来OK,上面还有零星的蓝色像素掉,也可以用同样的方法一起去掉。

甚至OCR都直接出效果了。

好了,完结撒花。


不过,后面发现,有些红色线段和蓝色点,是和验证码重合的。

这个时候,如果直接填成白色,就容易把字母切开,导致识别效果变差。

Python图片验证码降噪 - 8邻域降噪

想起这个文章的做法,所以改进了一下:

当前点是红色或者蓝色,判断周围点是不是超过两个像素点是黑色。

是,填充为黑色。

否,填充成白色。

最终完整代码:

from PIL import Image
import tesserocr
from loguru import logger class VerfyCodeOCR():
def __init__(self) -> None:
pass def ocr(self, img):
""" 验证码OCR Args:
img (img): imgObject/imgPath Returns:
[string]: 识别结果
"""
img_obj = Image.open(img) if type(img) == str else img
self._remove_pil(img_obj)
verify_code = tesserocr.image_to_text(img_obj)
return verify_code.replace("\n", "").strip() def _get_p_black_count(self, img: Image, _w: int, _h: int):
""" 获取当前位置周围像素点中黑色元素的个数 Args:
img (img): 图像信息
_w (int): w坐标
_h (int): h坐标 Returns:
int: 个数
"""
w, h = img.size
p_round_items = []
# 超过了横纵坐标
if _w == 0 or _w == w-1 or 0 == _h or _h == h-1:
return 0
p_round_items = [img.getpixel(
(_w, _h-1)), img.getpixel((_w, _h+1)), img.getpixel((_w-1, _h)), img.getpixel((_w+1, _h))]
p_black_count = 0
for p_item in p_round_items:
if p_item == (0, 0, 0):
p_black_count = p_black_count+1
return p_black_count def _remove_pil(self, img: Image):
"""清理干扰识别的线条和噪点 Args:
img (img): 图像对象 Returns:
[img]: 被清理过的图像对象
"""
w, h = img.size
for _w in range(w):
for _h in range(h):
o_pixel = img.getpixel((_w, _h))
# 当前像素点是红色(线段) 或者 绿色(噪点)
if o_pixel == (255, 0, 0) or o_pixel == (0, 0, 255):
# 周围黑色数量大于2,则把当前像素点填成黑色;否则用白色覆盖
p_black_count = self._get_p_black_count(img, _w, _h)
if p_black_count >= 2:
img.putpixel((_w, _h), (0, 0, 0))
else:
img.putpixel((_w, _h), (255, 255, 255)) logger.info(f"_remove_pil finish.")
# img.show()
return img if __name__ == '__main__':
verfyCodeOCR = VerfyCodeOCR()
img_path = "./imgs/51.png"
img= Image.open(img_path)
img.show()
ocr_result = verfyCodeOCR.ocr(img)
img.show()
logger.info(ocr_result)


总结:

  • 识别率大概是80%左右,部分连起来的字符会被识别错误,需要切割字符后单独识别
  • 降噪算法只适用于当前图片,其他场景需要自行适配

代码地址:https://github.com/liguobao/python-verify-code-ocr

参考文章:

发布于刚刚

【爬虫系列】1. 无事,Python验证码识别入门的更多相关文章

  1. python人工智能爬虫系列:怎么查看python版本_电脑计算机编程入门教程自学

    首发于:python人工智能爬虫系列:怎么查看python版本_电脑计算机编程入门教程自学 http://jianma123.com/viewthread.aardio?threadid=431 本文 ...

  2. python验证码识别

    关于利用python进行验证码识别的一些想法 用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章.我大体看了一下,主要方法有几类:一类是通过对图片进行处 理,然后 ...

  3. Python 验证码识别-- tesserocr

    Python 验证码识别-- tesserocr tesserocr 是 Python 的一个 OCR 识别库 ,但其实是对 tesseract 做的一 层 Python API 封装,所以它的核心是 ...

  4. 【转】Python验证码识别处理实例

    原文出处: 林炳文(@林炳文Evankaka) 一.准备工作与代码实例 1.PIL.pytesser.tesseract (1)安装PIL:下载地址:http://www.pythonware.com ...

  5. Python 验证码识别(别干坏事哦...)

    关于python验证码识别库,网上主要介绍的为pytesser及pytesseract,其实pytesser的安装有一点点麻烦,所以这里我不考虑,直接使用后一种库. python验证码识别库安装 要安 ...

  6. Windows平台python验证码识别

    参考: http://oatest.dragonbravo.com/Authenticate/SignIn?returnUrl=%2f http://drops.wooyun.org/tips/631 ...

  7. python验证码识别(2)极验滑动验证码识别

    目录 一:极验滑动验证码简介 二:极验滑动验证码识别思路 三:极验验证码识别 一:极验滑动验证码简介   近些年来出现了一些新型验证码,不想旧的验证码对人类不友好,但是这种验证码对于代码来说识别难度上 ...

  8. Python验证码识别处理实例(转载)

    版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract ...

  9. Python验证码识别处理实例(转)

    一.准备工作与代码实例 1.PIL.pytesser.tesseract (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载) 下 ...

随机推荐

  1. C++中封装和继承的访问权限

    众所周知,C++面向对象的三大特性为:封装,继承和多态.下面我们就先对封装做一些简单的了解.封装是通过C++中的类来完成的,类是一种将抽象转换为用户定义类型的工具.类的定义如下: class circ ...

  2. Terraform模块Module管理,聚合资源的抽取与复用

    我最新最全的文章都在南瓜慢说 www.pkslow.com,欢迎大家来喝茶! 1 简介 最近工作中用到了Terraform,权当学习记录一下,希望能帮助到其它人. Terraform系列文章如下: T ...

  3. kubernetes之副本控制器(RC/RS)

    1.了解ReplicationController ReplicationController是一种kubernetes资源,可确保它的pod始终保持运行状态. 如果pod因任何原因消失(例如节点从集 ...

  4. 05 找出占用CPU、内存过高的进程

    #!/bin/bash export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin echo "----- ...

  5. 一分钟了解JDBC的构成和原理

    JDBC(一组接口组成) : 形式如下: 1:JDBC-ODBC桥接技术(100%不用) 在Windows中有ODBC技术,ODBC指的是开放数据库链接 是由微软提供的数据库连接应用,而Java可以利 ...

  6. 【转载】Nginx多服务绑定80端口及映射域名

    多服务绑定80端口及映射域名 说明:业务需要配置的样例模板,如需深入了解,请查看官方文档 1.Nginx配置文件nginx.conf(可拆分多台机器部署) worker_processes  1; e ...

  7. [心得笔记]spring常用的三种依赖注入方式

    一.目前使用最广泛的 @Autowired:自动装配 基于@Autowired的自动装配,默认是根据类型注入,可以用于构造器.接口.方法注入,使用方式如下: @Autowired 构造方法.方法.接口 ...

  8. 解决mount.nfs: access denied by server while mounting

    在linux下进行挂载时突然出现: mount.nfs: access denied by server while mounting  第一感觉是读取文件权限不够,准备去更改一下挂载点的权限,但又考 ...

  9. linux学习之路第七天(时间日期类指令详解)

    时间日期类 1.date指令 date指令 - 显示当前日期 基本语法 1)date (功能描述:显示当前时间): 2) date + %Y (功能描述:显示当前年份) 3)date+%m( 功能描述 ...

  10. XCTF re-100

    一.无壳并拉入ida64静态调试(注释说的很明白了) 二.confuseKey是个关键函数,进入看看 发现就是将我们所输入的字符串分割,并把顺序调换了,调回来就是我们的flag. 三.flag: 提交 ...