DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,类似于均值转移聚类算法,但它有几个显著的优点。

  1. DBSCAN以一个从未访问过的任意起始数据点开始。这个点的领域是用距离ε(所有在ε的点都是邻点)来提取的。
  2. 如果在这个邻域中有足够数量的点(根据minPoints),那么聚类过程就开始了,并且当前的数据点成为新聚类中的第一个点。否则,该点将被标记为噪声(稍后这个噪声点可能会成为聚类的一部分)。在这两种情况下,这一点都被标记为(visited)。
  3. 对于新聚类中的第一个点,其ε距离附近的店也会成为同意了聚类的一部分。这一过程在ε临近的所有点都属于同一个聚类,然后重复所有刚刚添加到聚类组的新点。
  4. 步骤2和步骤3的过程将重复,直到所有点都被确定,就是说在聚类附近的所有点都已被访问和标记。
  5. 一旦我们完成了当前的聚类,就会检索并处理一个新的未访问点,这将导致进一步的聚类或噪声的发现。这个过程不断地重读,直到所有的点被标记为访问。因为在所有的点都被访问过之后,每一个点都被标记为属于一个聚类或者是噪声。

DBSCAN的主要缺点是,当聚类具有不同的密度时,它的性能不像其他聚类算法那样好。这是因为当密度变化时,距离阈值ε和识别临近点的minPoints的设置会随着聚类的不同而变化。这种缺点也会出现在非常高纬的数据中心,因为距离阈值ε变得难以估计。

推荐算法-聚类-DBSCAN的更多相关文章

  1. 推荐算法-聚类-K-MEANS

    对于大型的推荐系统,直接上协同过滤或者矩阵分解的话可能存在计算复杂度过高的问题,这个时候可以考虑用聚类做处理,其实聚类本身在机器学习中也常用,属于是非监督学习的应用,我们有的只是一组组数据,最终我们要 ...

  2. 跟我学算法聚类(DBSCAN)

    DBSCAN 是一种基于密度的分类方法 若一个点的密度达到算法设定的阖值则其为核心点(即R领域内点的数量不小于minPts) 所以对于DBSCAN需要设定的参数为两个半径和minPts 我们以一个啤酒 ...

  3. 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法

    聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数  - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...

  4. 机器学习聚类算法之DBSCAN

    一.概念 DBSCAN是一种基于密度的聚类算法,DBSCAN需要两个参数,一个是以P为中心的邻域半径:另一个是以P为中心的邻域内的最低门限点的数量,即密度. 优点: 1.不需要提前设定分类簇数量,分类 ...

  5. 密度聚类 - DBSCAN算法

    参考资料:python机器学习库sklearn——DBSCAN密度聚类,     Python实现DBScan import numpy as np from sklearn.cluster impo ...

  6. FP-tree推荐算法

    推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这 ...

  7. apriori推荐算法

    大数据时代开始流行推荐算法,所以作者写了一篇教程来介绍apriori推荐算法. 推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐 ...

  8. 美团网基于机器学习方法的POI品类推荐算法

    美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标 ...

  9. Mahout推荐算法基础

    转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...

随机推荐

  1. JS时间格式转成字符串

    formatNumber = n => { n = n.toString(); return n[1] ? n : '0' + n }; // 时间格式化 formatTime = date = ...

  2. jdk8的安装与环境搭建

    jdk8的安装与环境搭建 jdk8下载网址:https://www.oracle.com/cn/java/technologies/javase/javase-jdk8-downloads.html ...

  3. Python3读取网页HTML代码,并保存在本地文件中

    旧版Python中urllib模块内有一个urlopen方法可打开网页,但新版python中没有了,新版的urllib模块里面只有4个子模块(error,request,response,parse) ...

  4. Apache配置 4.访问日志

    (1)介绍 访问日志作用很大,不仅可以记录网站的访问情况,还可以在网站有异常发生时帮助我们定位问题. (2)配置 # vi /usr/local/apache2.4/conf/extra/httpd- ...

  5. HDU_6693 Valentine's Day 【概率问题】

    一.题目 Valentine's Day 二.分析 假设$ s_0 $代表不开心的概率,$ s_1 $代表开心一次的概率. 那么随便取一个物品,那么它的开心概率为$ p _i $,可以推导加入之后使女 ...

  6. Bug调试专项训练四笔记

    Ajax案例一 导入项目直接运行出现联想无反应 错误原因: 错误1: 55行找不到方法: 错误1解决方案: 解决错误1点击仍无反应 错误2:通过浏览器得出错误2:58行找不到方法 错误2解决方案: 解 ...

  7. 一种3位sar adc仿真验证

    3位sar adc采用下图的电容阵列,电路如下图:所有电容的正端(也称为上极板)与比较器的同相端连接,比较器反相端接gnd,其工作过程进行大致分析见之前的文章<一种3位sar adc工作过程推导 ...

  8. 基于Hive进行数仓建设的资源元数据信息统计:Hive篇

    在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...

  9. 致命错误:Python.h:没有那个文件或目录

    yum search python3 | grep dev sudo yum install python3xxx-devel

  10. [2020年10月28日普级组]1406.SMRTFUN

    S M R T F U N SMRTFUN SMRTFUN 题目描述 "又肥又温顺,又大又笨,他们看起来那么傻,而且也不有趣--" 这些牛想要证明,他们是既有趣,又聪明的.为了这样 ...