学习了一下这个较为冷门的知识,由于从日报开始看起,还是比较绕的……

首先定义 \(Z\) 函数表示后缀 \(i\) 与整个串的 \(lcp\) 长度

一个比较好的理解于实现方式是类似于 \(manacher\) 维护出 \([l,r]\) 表示能够匹配的最右端是 \(l\) 位置匹配上的到达 \(r\) 的区间

假设目前求到 \(i\):

那么可以发现可以直接由 \(nxt[i-l+1]\) 继承过来,需要和 \(r-i+1\) 取 \(min\)

另一个问题是假如 \(r<i\) 或 \(nxt[i-l+1]\ge r-i+1\),后面的部分需要进行暴力匹配

并且及时更新 \(r\) 的取值

以下是模板实现:

代码实现
#include<bits/stdc++.h>
using namespace std;
const int maxn=2e7+5;
int n,m,nxt[maxn],ex[maxn];
char a[maxn],b[maxn];
long long ans;
void getnxt(){
nxt[1]=m;
for(int i=2,l=0,r=0;i<=m;i++){
if(i<=r)nxt[i]=min(nxt[i-l+1],r-i+1);
while(i+nxt[i]<=m&&b[nxt[i]+i]==b[nxt[i]+1])nxt[i]++;
if(i+nxt[i]-1>r)r=i+nxt[i]-1,l=i;
}
return ;
}
void exkmp(){
for(int i=1,l=0,r=0;i<=n;i++){
if(i<=r)ex[i]=min(nxt[i-l+1],r-i+1);
while(i+ex[i]<=n&&a[ex[i]+i]==b[ex[i]+1])ex[i]++;
if(i+ex[i]-1>r)l=i,r=i+ex[i]-1;
}
return ;
}
int main(){
scanf("%s%s",a+1,b+1);
n=strlen(a+1),m=strlen(b+1);
getnxt();exkmp();
for(int i=1;i<=m;i++)ans^=1ll*i*(nxt[i]+1);cout<<ans<<endl;//printf("%d ",nxt[i]);puts("");
ans=0;for(int i=1;i<=n;i++)ans^=1ll*i*(ex[i]+1);cout<<ans;
return 0;
}

CF432D Prefixes and Suffixes

相当于比较每个后缀的 \(nxt\) 值是否等于后缀长度

由于需要求出现的次数,不妨还是把后缀们平移到前缀的位置

那么发现一个前缀出现的次数是后面前缀出现次数的前缀和

代码实现
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
char a[maxn];
int nxt[maxn],ans,cnt[maxn];
bool vis[maxn];
int main(){
scanf("%s",a+1);
int n=strlen(a+1);
nxt[1]=n;
for(int i=2,l=0,r=0;i<=n;i++){
if(i<=r)nxt[i]=min(nxt[i-l+1],r-i+1);
while(nxt[i]+i<=n&&a[nxt[i]+i]==a[nxt[i]+1])nxt[i]++;
if(nxt[i]+i-1>r)r=nxt[i]+i-1,l=i;
}
for(int i=1;i<=n;i++){
if(i+nxt[i]-1==n)ans++,vis[nxt[i]]=true;
cnt[nxt[i]]++;
}
for(int i=n;i>=1;i--)cnt[i]+=cnt[i+1];
cout<<ans<<endl;
for(int i=1;i<=n;i++)if(vis[i])printf("%d %d\n",i,cnt[i]);
return 0;
}

扩展kmp 学习笔记的更多相关文章

  1. 扩展kmp学习笔记

    kmp没写过,扩展kmp没学过可还行. 两个愿望,一次满足 (该博客仅用于防止自己忘记,不保证初学者能看懂我在瞎bb什么qwq) 用途 对于串\(s1,s2\),可以求出\(s2\)与\(s1\)的每 ...

  2. 126B Password[扩展kmp学习]

    题目大意 给你一个字符串,求它的一个子串使得这个子串即使前缀又是后缀又出现在不是前缀且不是后缀的地方 分析 扩展kmp就是定义z[i]表示i~n的子串与整个串的最长公共前缀的长度是z[i] 所以这个题 ...

  3. KMP学习笔记

    功能 字符串T,长度为n. 模板串P,长度为m.在字符串T中找到匹配点i,使得从i开始T[i]=P[0], T[i+1]=P[1], . . . , T[i+m-1]=P[m-1] KMP算法先用O( ...

  4. C#扩展方法学习笔记

    C#扩展方法,简单的理解是不修改原来类的源代码的情况下,为某个类添加某个方法.扩展方法被定义为静态方法,但它们是通过实例方法语法进行调用的.它们的第一个参数指定该方法作用于哪个类型,并且该参数以 th ...

  5. Unity扩展编辑器学习笔记--从路径下找到拥有某个组件类型的预设

    public static List<T> GetAssetsWithScript<T>(string path) where T:MonoBehaviour { T tmp; ...

  6. ReactiveX 学习笔记(0)学习资源

    ReactiveX 学习笔记 ReactiveX 学习笔记(1) ReactiveX 学习笔记(2)创建数据流 ReactiveX 学习笔记(3)转换数据流 ReactiveX 学习笔记(4)过滤数据 ...

  7. Kuangbin 带你飞 KMP扩展KMP Manacher

    首先是几份模版 KMP void kmp_pre(char x[],int m,int fail[]) { int i,j; j = fail[] = -; i = ; while (i < m ...

  8. Kotlin学习笔记(9)- 数据类

    系列文章全部为本人的学习笔记,若有任何不妥之处,随时欢迎拍砖指正.如果你觉得我的文章对你有用,欢迎关注我,我们一起学习进步! Kotlin学习笔记(1)- 环境配置 Kotlin学习笔记(2)- 空安 ...

  9. HDU 4333 Revolving Digits [扩展KMP]【学习笔记】

    题意:给一个数字,每一次把它的最后一位拿到最前面,一直那样下去,分别求形成的数字小于,等于和大于原来数的个数. SAM乱搞失败 当然要先变SS了 然后考虑每个后缀前长为n个字符,把它跟S比较就行了 如 ...

随机推荐

  1. Celery Task(定时任务)及参数

    celery beat 是一个调度器:它以常规的时间间隔开启任务,任务将会在集群中的可用节点上运行. 默认情况下,入口项是从 beat_schedule 设置中获取,但是自定义的存储也可以使用,例如在 ...

  2. UVM RAL模型和内置seq

    转载:UVM RAL模型:用法和应用_寄存器 (sohu.com) 在系统设计中通常会面临两大挑战:缩小技术节点的规模和上市时间(TTM,Time to Market).为了适应激烈的市场竞争,大多数 ...

  3. (转载)linux chmod命令用法

    chmod----改变一个或多个文件的存取模式(mode) chmod [options] mode files   只能文件属主或特权用户才能使用该功能来改变文件存取模式.mode可以是数字形式(八 ...

  4. 原串反转 牛客网 程序员面试金典 C++ Python

    原串反转 牛客网 程序员面试金典 C++ Python 题目描述 请实现一个算法,在不使用额外数据结构和储存空间的情况下,翻转一个给定的字符串(可以使用单个过程变量). 给定一个string iniS ...

  5. 【Go语言学习笔记】为什么要选择Go语言

    一门语言的兴起一定有他的原因,所谓天下苦Java久矣,Go的到来可以说很多后端开发的福音,尤其是在微服务.分布式这么火的今天,那么,他的优势到底是什么呢? 首先,我们需要现有后端语言的优势痛点: 其实 ...

  6. git stash 存储命令

    应用场景 一.当你接到一个修复紧急 bug 的任务时候,一般都是先创建一个新的 bug 分支来修复它,然后合并,最后删除.但是,如果当前你正在开发功能中,短时间还无法完成,无法直接提交到仓库,这时候可 ...

  7. ExtJS 去除水印

    在路径(根目录/ext/classic(或者modern)/theme-base/sass/etc/all.scss)文件中修改\(ext-trial: true !default; 为\)ext-t ...

  8. [cf1444D]Rectangular Polyline

    由于两种线段要交替出现,有解的必要条件即为$h=v$(以下均记为$n$) 进一步的,再假设两种线段依次对应于向量$(a_{i},0)$和$(0,b_{i})$,根据题意要求向量长度为给定值且和为0,那 ...

  9. [loj3301]魔法商店

    令$A=\{a_{1},a_{2},...,a_{s}\}$,若$k\not\in A$,那么恰存在一个$A'\subseteq A$使得$c_{k}=\bigoplus_{x\in A'}c_{x} ...

  10. vue3 + vite实现异步组件和路由懒加载

    在 Vue2 中,异步组件和路由懒加载处理使用 import 就可以很轻松实现.但是在Vue 3.x 中异步组件的使用与 Vue 2.x 完全不同了.本文就详细讲讲vue3中异步组件和路由懒加载的实现 ...