Codeforces 848C Goodbye Souvenir(CDQ 分治)
考虑记录每个点的前驱 \(pre_x\),显然答案为 \(\sum\limits_{i=l}^{r} i-pre_i (pre_i \geq l)\)
我们建立一个平面直角坐标系,\(x\) 轴表示下标 \(i\),\(y\) 轴表示前驱 \(pre_i\),点权为 \(i-pre_i\)。
每次询问以 \((l,l)\) 为左下角,\((r,n)\) 为右下角的矩形中所有点的权值和。
至于修改操作,就是撤销上次操作的贡献,加入新的贡献。
至此,我们就把问题转化为单点加,矩形和的问题,再加上有时间轴,三维偏序,故可用 CDQ 分治维护。
/*
Contest: -
Problem: Codeforces 848C
Author: tzc_wk
Time: 2020.7.17
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int INF=1e9;
int n=read(),m=read(),k=0,ans[1000005],a[100005];
struct data{
int t,p2,p1,p3;
} p[1000005],tmp[1000005];
set<int> st[100005];
struct BIT{
int bit[2000005];
inline void add(int x,int v){
x++;
for(int i=x;i<=n+1;i+=(i&(-i))) bit[i]+=v;
}
inline int query(int x){
x++;
int sum=0;
for(int i=x;i;i-=(i&(-i))) sum+=bit[i];
return sum;
}
} t;
inline void merge(int l,int r,int mid){
int p1=l,p2=mid+1;
for(int i=l;i<=r;i++){
if(p1<=mid&&(p2>r||p[p1].p2<p[p2].p2))
tmp[i]=p[p1++];
else
tmp[i]=p[p2++];
}
for(int i=l;i<=r;i++){
p[i]=tmp[i];
}
}
inline void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>1;
CDQ(l,mid);CDQ(mid+1,r);
// printf("%d %d\n",l,r);
int cur=l;
for(int i=mid+1;i<=r;i++){
if(p[i].p3!=-INF) continue;
while(cur<=mid&&p[cur].p2<=p[i].p2){
if(p[cur].p3!=-INF) t.add(p[cur].p1,p[cur].p3);
cur++;
}
ans[p[i].t]+=t.query(n)-t.query(p[i].p1-1);
}
fz(i,l,cur-1) if(p[i].p3!=-INF) t.add(p[i].p1,-p[i].p3);
merge(l,r,mid);
}
signed main(){
fz(i,1,n) a[i]=read();
fz(i,1,n) st[i].insert(0);
fz(i,1,n){
p[++k]={k,i,*st[a[i]].rbegin(),i-*st[a[i]].rbegin()};
st[a[i]].insert(i);
}
fz(i,1,n) st[i].insert(n+1);
fill1(ans);
fz(i,1,m){
int op=read(),x=read(),y=read();
if(op==1){
set<int>::iterator pre=--st[a[x]].lower_bound(x);
set<int>::iterator nxt=st[a[x]].upper_bound(x);
p[++k]={k,*nxt,x,-((*nxt)-x)};
p[++k]={k,x,*pre,-(x-(*pre))};
p[++k]={k,*nxt,*pre,(*nxt)-(*pre)};
st[a[x]].erase(x);
a[x]=y;
pre=--st[a[x]].lower_bound(x);
nxt=st[a[x]].upper_bound(x);
p[++k]={k,*nxt,x,((*nxt)-x)};
p[++k]={k,x,*pre,(x-(*pre))};
p[++k]={k,*nxt,*pre,-((*nxt)-(*pre))};
st[a[x]].insert(x);
}
else{
p[++k]={k,y,x,-INF};
ans[k]=0;
}
}
// fz(i,1,k){
// printf("%d %d %d %d\n",p[i].t,p[i].p1,p[i].p2,p[i].p3);
// }
// puts("-1");
CDQ(1,k);
fz(i,1,k) if(ans[i]!=-1) printf("%lld\n",ans[i]);
return 0;
}
Codeforces 848C Goodbye Souvenir(CDQ 分治)的更多相关文章
- Codeforces 848C Goodbye Souvenir [CDQ分治,二维数点]
洛谷 Codeforces 这题我写了四种做法-- 思路 不管做法怎样,思路都是一样的. 好吧,其实不一样,有细微的差别. 第一种 考虑位置\(x\)对区间\([l,r]\)有\(\pm x\)的贡献 ...
- [Codeforces]848C - Goodbye Souvenir
题目大意:n个数字,m次操作,支持修改一个数字和查询一个区间内每种数字最大出现位置减最小出现位置的和.(n,m<=100,000) 做法:把每个数字表示成二维平面上的点,第一维是在数组中的位置, ...
- CF848C:Goodbye Souvenir(CDQ分治)
Description 给定长度为$n$的数组, 定义数字$X$在$[l,r]$内的值为数字$X$在$[l,r]$内最后一次出现位置的下标减去第一次出现位置的下标给定$m$次询问, 每次询问有三个整数 ...
- [Codeforces]849E Goodbye Souvenir
又是一道比较新的模板题吧,即使是在Codeforces上小C还是贴了出来. Description 给定一个长度为n的序列a1~an,每个元素代表一种颜色.m次操作,每次操作为两种中的一种: 1 p ...
- Codeforces 1045G AI robots [CDQ分治]
洛谷 Codeforces 简单的CDQ分治题. 由于对话要求互相看见,无法简单地用树套树切掉,考虑CDQ分治. 按视野从大到小排序,这样只要右边能看见左边就可以保证互相看见. 发现\(K\)固定,那 ...
- Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- Codeforces 848C (cdq分治)
Codeforces 848C Goodbye Souvenir Problem : 给一个长度为n的序列,有q个询问.一种询问是修改某个位置的数,另一种询问是询问一段区间,对于每一种值出现的最右端点 ...
- 【Codeforces 848C】Goodbye Souvenir
Codeforces 848 C 题意:给\(n\)个数,\(m\)个询问,每一个询问有以下类型: 1 p x:将第p位改成x. 2 l r:求出\([l,r]\)区间中每一个出现的数的最后一次出现位 ...
- Codeforces 1093E Intersection of Permutations [CDQ分治]
洛谷 Codeforces 思路 一开始想到莫队+bitset,发现要T. 再想到分块+bitset,脑子一抽竟然直接开始写了,当然也T了. 最后发现这就是个裸的CDQ分治-- 发现\(a\)不变,可 ...
随机推荐
- find+xargs+sed批量替换
写代码时经常遇到要把 .c 和 .h的文件中的某些内容全部替换的情况,用sourceinsight 进行全局的查找是一个方法,但是sourceinsight只能替换一个文件中的字符串,不能同时替换多 ...
- AIApe问答机器人Scrum Meeting 5.3
Scrum Meeting 6 日期:2021年5月3日 会议主要内容概述:汇报两日工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明昕 后端 与前端对 ...
- shell 匿名管道和命名管道
管道的特点:如果管道中没有数据,那么取管道数据的操作就会滞留,直到管道内进入数据,然后读出后才会终止这一操作:同理,写入管道的操作如果没有读取管道的操作,这一动作也会滞留. 1,匿名管道 匿名管道使用 ...
- 大型DELETE(删除大量数据)的一种解决方案
通过执行单条DELETE语句来删除一个大型的数据集会有以下的缺点: 1.DELETE语句的操作要被完整地记录到日志中,这要求在事务日志中要有足够的空间以完成整个事务: 2.在删除操作期间(可能会花费很 ...
- WPF实现统计图
WPF开发者QQ群: 340500857 | 微信群 -> 进入公众号主页 加入组织 前言 有小伙伴提出需要实现统计图. 由于在WPF中没有现成的统计图控件,所以我们自己实现一个. PS:有更 ...
- Django 实现分页功能(django 2.2.7 python 3.7.5 )
Django 自带名为 Paginator 的分页工具, 方便我们实现分页功能.本文就讲解如何使用 Paginator 实现分页功能. 一. Paginator Paginator 类的作用是将我们需 ...
- 力扣 - 剑指 Offer 06. 从尾到头打印链表.md
题目 剑指 Offer 06. 从尾到头打印链表 思路1(递归) 首先先遍历整个脸表,计算出链表的长度(用于初始化数组).然后进行递归,从链表头部递归到尾部,这期间什么都不做,直到递归到最后一个节点的 ...
- KMP算法-字符匹配
字符匹配模式-KMP算法 j直接跳到了2的位置,因为在之前的都相同. 那么就需要求如果不等了之后,j需要回跳的位置next[j] 如果tk'与tj相等,则next [j+1]=k'+1 如果tk'与t ...
- fork()和vfork()的区别,signal函数用法,exec()系列函数的用法小结
一:fork()和vfork()的区别: fork()函数可以创建子进程,有两个返回值,即调用一次返回两个值,一个是父进程调用fork()后的返回值,该返回值是刚刚创建的子进程的ID;另一个是子 ...
- 快速排序--洛谷卡TLE后最终我还是选择了三向切割
写在前边 这篇文章呢,我们接着聊一下排序算法,我们之前已经谈到了简单插入排序 和ta的优化版希尔排序,这节我们要接触一个更"高级"的算法了--快速排序. 在做洛谷的时候,遇到了一道 ...