多边形凸包。。

。。

Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu

Submit Status

Description

Problem B

Board Wrapping

Input: standard input

Output: standard output

Time Limit: 2 seconds

The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.

Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.

Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following
the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.

Input

On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n1<
n <= 600
, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are
the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive
clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.

Output

For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).

Sample Input                              Output for Sample Input

1

4

4 7.5 6 3 0

8 11.5 6 3 0

9.5 6 6 3 90

4.5 3 4.4721 2.2361 26.565

64.3 %


Swedish National Contest

The Sample Input and Sample Output corresponds to the givenpicture

Source

Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: (Computational) Geometry :: Polygon :: Standard

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Algorithms in 2D :: Examples



Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: (Computational) Geometry :: Polygon
- Standard

Submit Status

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector> using namespace std; const double eps=1e-6; int dcmp(double x) { if(fabs(x)<eps) return 0; return (x<0)?-1:1;} struct Point
{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){};
}; Point operator+(Point A,Point B) { return Point(A.x+B.x,A.y+B.y);}
Point operator-(Point A,Point B) { return Point(A.x-B.x,A.y-B.y);}
Point operator*(Point A,double p) { return Point(A.x*p,A.y*p);}
Point operator/(Point A,double p) { return Point(A.x/p,A.y/p);} bool operator<(const Point& A,const Point& B) {return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
bool operator==(const Point& a,const Point& b) {return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Angle(Point v){return atan2(v.y,v.x);}
Point Rotate(Point A,double rad) {return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));}
double torad(double deg) {return deg/180.*acos(-1.);}
double Cross(Point A,Point B){return A.x*B.y-A.y*B.x;} int n;
double area0,area1;
vector<Point> vp,ch; // 点集凸包
// 假设不希望在凸包的边上有输入点,把两个 <= 改成 <
// 注意:输入点集会被改动
vector<Point> CovexHull(vector<Point>& p)
{
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
int n=p.size();
int m=0;
vector<Point> ch(n+1);
for(int i=0;i<n;i++)
{
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--)
{
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
ch.resize(m);
return ch;
} double PolygonArea(vector<Point>& p)
{
int n=p.size();
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2.;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d",&n);
area0=area1=0.0;
vp.clear();
double x,y,w,h,j;
for(int i=0;i<n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
area0+=w*h;
double rad=torad(j);
Point o(x,y);
vp.push_back(o+Rotate(Point(w/2,h/2),-rad));
vp.push_back(o+Rotate(Point(-w/2,h/2),-rad));
vp.push_back(o+Rotate(Point(w/2,-h/2),-rad));
vp.push_back(o+Rotate(Point(-w/2,-h/2),-rad));
}
ch=CovexHull(vp);
area1=PolygonArea(ch);
printf("%.1lf %%\n",100.*area0/area1);
}
return 0;
}

UVA 10652 Board Wrapping 计算几何的更多相关文章

  1. Uva 10652 Board Wrapping(计算几何之凸包+点旋转)

    题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...

  2. uva 10652 Board Wrapping (计算几何-凸包)

    Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...

  3. UVA 10652 Board Wrapping(凸包)

    The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...

  4. ●UVA 10652 Board Wrapping

    题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...

  5. 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping

    题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...

  6. uva 10652 Board Wrapping

    主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...

  7. UVA 10652 Board Wrapping(凸包)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...

  8. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

  9. uva 10625 Board Wrapping

    https://vjudge.net/problem/UVA-10652 给出n个长方形,用一个面积尽量小的凸多边形把他们围起来 求木板占包装面积的百分比 输入给出长方形的中心坐标,长,宽,以及长方形 ...

随机推荐

  1. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  2. Dubbo整合SpringCloud图片显示问题

    Dubbo整合SpringCloud图片显示问题 Tips:公司项目,记录一点经验吧,理解的不对的地方欢迎大神指点 问题:商品图片上传功能(公司没有专门文件服务器)写的保存目录直接是保存在docker ...

  3. Spring---介绍

    核心容器:Core.Beans.Context.EL模块 1.     Core模块:封装了框架依赖的最底层部分,包括访问资源.类型转换及一些常用工具类 2.     Beans模块:提供了框架的基础 ...

  4. [转]Intent和IntentFilter详解

        Intent   Android中提供了Intent机制来协助应用间的交互与通讯,Intent负责对应用中一次操作的动作.动作涉及数据.附加数据进行描述,Android则根据此Intent的描 ...

  5. 【原创】Eclipse中Android项目引用

    1.选择名为SMSSDK的项目,右键--->Properties--->Android--->将Is Library勾上--->OK. 2.选中另一个名为FragmentDem ...

  6. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  7. sklearn中的投票法

    投票法(voting)是集成学习里面针对分类问题的一种结合策略.基本思想是选择所有机器学习算法当中输出最多的那个类. 分类的机器学习算法输出有两种类型:一种是直接输出类标签,另外一种是输出类概率,使用 ...

  8. 【EGit】The current branch is not configured for pull No value for key branch.master.merge found in config

    1.在当前项目的本地工程目录找到config文件(例如E:\rocket\rocket\.git): 2.修改config文件内容为: [core]    repositoryformatversio ...

  9. 如何在Ubuntu中用firefox浏览器查看chm文档?

    首先下载这插 件:在firefox中点击“工具”->“附加软件”->“扩展”,在firefix扩展网页下搜索“"chmfox" 然后安装,重启后就可以了.

  10. Android的Master/Detail风格界面中实现自定义ListView的单选

    原文在这里:http://duduli.iteye.com/blog/1453576 可以实现多选,那么如何实现单选呢,这里我写了一个非常简单的方法: public void onListItemCl ...