Apple Tree
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 25232   Accepted: 7503

Description

There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.

The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.

The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

Input

The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning

Output

For every inquiry, output the correspond answer per line.

Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2

Source

POJ Monthly--2007.08.05, Huang, Jinsong
题意:给你一颗n个节点的树,每个节点开始有一个苹果,然后m次修改,每次修改使得某个节点的苹果改变,有变成没有,没有变成有。询问的是某个节点及其子树的苹果数目。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=100000+10; int dfs_clock=0,vis[4*maxn],s[4*maxn],e[4*maxn];
vector<vector<int> > G(4*maxn);
struct node{
int l,r,val,flag;
int mid(){
return (l+r)>>1;
}
}tree[4*maxn]; void push_up(int k)
{
tree[k].val=tree[2*k].val+tree[2*k+1].val;
} void build(int k,int l,int r)
{
tree[k].l=l;tree[k].r=r;
if(l==r) {tree[k].val=1;return;}
build(2*k,l,(l+r)/2);
build(2*k+1,(l+r)/2+1,r);
push_up(k);
} void dfs(int u)
{
dfs_clock++;
vis[u]=1;
s[u]=dfs_clock;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(vis[v]) continue;
dfs(v);
}
e[u]=dfs_clock;
} void update(int k,int pos)
{
if(tree[k].l==tree[k].r) {tree[k].val^=1;return;}
if(pos<=tree[k].mid()) update(2*k,pos);
else update(2*k+1,pos);
push_up(k);
} int query(int k,int l,int r)
{
if(l<=tree[k].l&&tree[k].r<=r)
return tree[k].val;
else if(tree[k].r>=l&&tree[k].l<=r)
{
int res=0;
res+=query(2*k,l,r);
res+=query(2*k+1,l,r);
return res;
}
else return 0;
} int main()
{
int n,m;
while(~scanf("%d",&n))
{
MM(vis,0);
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=n-1;i++)
{
int u,v;
scanf("%d %d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs_clock=0;
dfs(1);
build(1,1,n); scanf("%d",&m);
for(int i=1;i<=m;i++)
{
char a[3];int x;
scanf("%s %d",a,&x);
if(a[0]=='Q') printf("%d\n",query(1,s[x],e[x]));
else update(1,s[x]);
}
}
return 0;
}

  分析:线段树很好的一道题,比赛的时候想到了单点更新维护区间和,所以应该要线段树或BIT,但是

这棵树连二叉树都不是,就不知道怎么维护了,,,,这也是这道题的精华所在,首先dfs一次,依据

时间戳,得出每个节点维护的区间,这样子节点维护的区间必然被父节点包含,然后就是常规的线段树了,

单点更新时就只要更新该点所在时间戳的那个点,这样包含该点的区间的值也会相应修改,查询某点

及其子树的值,就只要查询这个点对应的区间就好,神奇的一题

#5 DIV2 A POJ 3321 Apple Tree 摘苹果 构建线段树的更多相关文章

  1. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  2. POJ 3321 Apple Tree dfs+二叉索引树

    题目:http://poj.org/problem?id=3321 动态更新某个元素,并且求和,显然是二叉索引树,但是节点的标号不连续,二叉索引树必须是连续的,所以需要转化成连续的,多叉树的形状已经建 ...

  3. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  4. POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)

    id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...

  5. POJ 3321 Apple Tree 【树状数组+建树】

    题目链接:http://poj.org/problem?id=3321 Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...

  6. ACM学习历程——POJ3321 Apple Tree(搜索,线段树)

          Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will ...

  7. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  8. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  9. (简单) POJ 3321 Apple Tree,树链剖分+树状数组。

    Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...

随机推荐

  1. Kinect开发-Hello Kinect

    置好开发环境后,首先测试下是否真的完成,也就是能够正常进行开发.此时,当然就得祭出Hello World大法! 1.首先创建一个WPF Application工程,之后添加对Microsoft.Kin ...

  2. Springboot提示数据库连接问题Connection is not available

    2019-05-29 11:19:51.824 WARN 854 --- [io-8080-exec-10] o.h.engine.jdbc.spi.SqlExceptionHelper : SQL ...

  3. 设置Cookies

    设置Cookies: public ActionResult Index() { // if (Request.Cookies["user"] != null) { //Serve ...

  4. 数据绑定-POJO对象绑定参数

    测试: 效果:

  5. 转载:开源许可证GPL、BSD、MIT、Mozilla、Apache和LGPL的区别

    转自:https://www.cnblogs.com/findumars/p/6309048.html 首先借用有心人士的一张相当直观清晰的图来划分各种协议:开源许可证GPL.BSD.MIT.Mozi ...

  6. CDH5.13.3安装手册

    Server端需要打开端口 7180 7182 选址正确的版本,cdh版本不要高于cm版本 CM下载地址 http://archive.cloudera.com/cm5/cm/5/cloudera-m ...

  7. CentOS 7系统时间与实际时间差8个小时

    1.查看系统时间: [root@localhost sysconfig]# timedatectl Local time: 一 2017-11-06 21:13:19 CST Universal ti ...

  8. SpringMVC基础03——常用注解之@RequestMapping

    1.用法 SpringMVC使用@RequestMapping注解,为控制器指定可以处理哪些URL请求,并且可以指定处理请求的类型(POST/GET),如果@RequestMapping没有指定请求的 ...

  9. 17、RAID和LVM

    一.RAID 1.什么是raid 磁盘阵列(Redundant Arrays of Independent Drives,RAID),有"独立磁盘构成的具有冗余能力的阵列"之意. ...

  10. 第十篇.2、python并发编程之多进程

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...