洛谷3321 SDOI2015 序列统计
懒得放传送【大雾
有趣的一道题
前几天刚好听到Creed_神犇讲到相乘转原根变成卷积的形式
看到这道题当然就会做了啊w
对于m很小 我们暴力找原根 如果你不会找原根的话 出门左转百度qwq
找到原根以后所有数转成原根的幂次然后卷积就吼了啊
多项式卡速米 由于是循环卷积所以每一次还要转回系数相加再转回来
所以是不优美的O(nlg^2n) =v=
代码在这里。
//Love and Freedom.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define wph 1004535809ll
#define mxn 810000
using namespace std;
int ksm(int bs,int mi,int mdn)
{
int ans=1;
while(mi)
{
if(mi&1) ans=(ll)ans*bs%mdn;
bs=(ll)bs*bs%mdn; mi>>=1;
}
return ans;
}
int n,m,x,s;
int G,rev[mxn<<1];
int id[mxn];
void find_G()
{
for(int i=2;i<=m;i++)
{
memset(id,0,sizeof(id));
int tmp=1,j;
for(j=0;j<m-1;j++)
{
if(id[tmp]) break;
id[tmp] = j;
tmp*=i; tmp%=m;
}
if(j==m-1){G=i;return;}
}
}
void NTT(int *a,int n,int f)
{
for(int i=0;i<n;i++) if(rev[i]>i)
swap(a[rev[i]],a[i]);
for(int k=2,mid=1;k<=n;k<<=1,mid<<=1)
{
int Wn=ksm(3,(wph-1)/k,wph);
if(f) Wn=ksm(Wn,wph-2,wph);
for(int i=0,w=1;i<n;i+=k,w=1)
for(int j=0;j<mid;j++,w=(ll)w*Wn%wph)
{
int x=a[i+j],y=(ll)w*a[i+mid+j]%wph;
a[i+j]=(x+y)%wph; a[i+mid+j]=(x-y+wph)%wph;
}
}
if(f) for(int i=0,inv=ksm(n,wph-2,wph);i<n;i++)
a[i] = (ll)a[i]*inv%wph;
}
int init(int n)
{
int lim=1,l=0;
while(lim<n) lim<<=1,l++;
for(int i=0;i<lim;i++)
rev[i] = (rev[i>>1]>>1)|((i&1)<<(l-1));
return lim;
}
void poly_ksm(int *ans,int *bs,int n,int mi)
{
//for(int i=0;i<n;i++) printf("%d ",bs[i]);
//printf("\n");
ans[0] = 1;
int lim = init(n<<1);
NTT(ans,lim,0); NTT(bs,lim,0);
//printf("%d\n",ans[0]);
while(mi)
{
if(mi&1)
{
//printf("%d\n",n);
for(int i=0;i<lim;i++)
ans[i] =(ll)ans[i]*bs[i]%wph;
NTT(ans,lim,1);
//ans[0] = 0;
for(int i=0;i<n-1;i++)
ans[i] = (ans[i]+ans[i+n-1])%wph,ans[i+n-1]=0;
NTT(ans,lim,0);
}
for(int i=0;i<lim;i++) bs[i]=(ll)bs[i]*bs[i]%wph;
NTT(bs,lim,1);
//bs[0] = 0;
for(int i=0;i<n-1;i++) bs[i]=(bs[i]+bs[i+n-1])%wph,bs[i+n-1]=0;
NTT(bs,lim,0);
mi>>=1;
}
NTT(ans,lim,1);
//for(int i=0;i<lim;i++) printf("%d ",ans[i]);
}
int a[mxn<<1],ans[mxn<<1];
int main()
{
scanf("%d%d%d%d",&n,&m,&x,&s);
find_G();int t;
for(int i=1;i<=s;i++)
{
scanf("%d",&t);
if(t%m==0) continue;
t%=m; a[id[t]]++;
}
poly_ksm(ans,a,m,n);
printf("%d\n",ans[id[x]]);
return 0;
}
洛谷3321 SDOI2015 序列统计的更多相关文章
- [洛谷P3321][SDOI2015]序列统计
题目大意:给你一个集合$n,m,x,S(S_i\in(0,m],m\leqslant 8000,m\in \rm{prime},n\leqslant10^9)$,求一个长度为$n$的序列$Q$,满足$ ...
- 洛谷P3321 [SDOI2015]序列统计(NTT)
传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示 ...
- Luogu 3321 [SDOI2015]序列统计
BZOJ 3992 点开这道题之后才发现我对原根的理解大概只停留在$998244353$的原根是$3$…… 关于原根: 点我 首先写出$dp$方程,设$f_{i, j}$表示序列长度为$i$当前所有数 ...
- 洛咕 P3321 [SDOI2015]序列统计
显然dp就是设\(f[i][j]\)表示dp了i轮,对m取膜是j的方案数 \(f[i][xy\mod m]=f[i-1][x]\times f[i-1][y]\) 这是\(O(nm^2)\)的 像我这 ...
- 【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)
题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案 ...
- 【LG3321】[SDOI2015]序列统计
[LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...
- BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1017 Solved: 466[Submit][Statu ...
- [SDOI2015]序列统计
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...
- 3992: [SDOI2015]序列统计
3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...
随机推荐
- 怎么实现web端上传超大文件
1.介绍enctype enctype 属性规定发送到服务器之前应该如何对表单数据进行编码. enctype作用是告知服务器请求正文的MIME类型(请求消息头content-type的作用一样) 1. ...
- Docker容器日常操作命令
在Docker的运用中,从下载镜像,启动容器,在容器中输入命令来运行程序,这些命令都是手工一条条往里输入的,无法重复利用,而且效率很低.所以就需要一 种文件或脚本,我们把想执行的操作以命令的方式写入其 ...
- HTML 浅层漫谈
讲到HTML最主要的就是如何给这个网页搭架子给他大致的把这个人物样子先慢慢画出来,然后我们后面去学习这个CSS还有JS的时候给这个雏形慢慢的去加一些东西,让你的网页变得越来越好看 1.标签的使用 a: ...
- python读写excle
我们可以通过python的一些模块进行excle中用例的读取,或者导出数据到excle 目录 1.安装模块 2.读excle 3.写excle 1.安装模块 python中有第三方模块可以进行excl ...
- Jquery.extend()和jQuery.fn.extend(object);
摘自: jquery $.fn $.fx是什么意思有什么用_jquery_脚本之家 jQuery.extend(object); 为扩展jQuery类本身.为类添加新的方法. jQuery.fn.ex ...
- NaN、null、undefined的那些事
一.NaN , NaN, 'abc', false] let newArray = JSON.parse(JSON.stringify(arr)) // [1, null, 'abc', false] ...
- Vagrant 手册之 box - box 的信息格式
原文地址 创建 Vagrant 的 box 时,可以提供在运行 vagrant box list -i 时展示的与用户相关的其他信息.例如,可以打包 box,以包含有关该 box 的作者和网站信息: ...
- c++函数overload 的歧义匹配
https://www.zhihu.com/question/20200615 函数重载选择最佳匹配函数涉及到类型转换,默认参数 注意:没有int f(int,int)版本,编译器认为上面两个函数都是 ...
- python math 模块
数学模块 引入模块:import math 注意: 使用某个模块下的函数,必须先引入这个模块,否则无法正常使用. ceil() 向上取整操作 格式:math.ceil(数值) 返回值:整型 floor ...
- JavaScript高级程序设计(第3版) 第四章(变量、作用域和内存问题)
4.1 基本类型和引用类型的值 1.基本类型的值是(简单的数据段),引用类型的值是(保存在内存中的对象). 基本类型的值在内存中占据固定大小的空间,因此被保存在栈中.(lifo ...