If your Neural Network model seems to have high variance, what of the following would be promising things to try?

Make the Neural Network deeper

N

Get more training data

Y

Get more test data

N

Add regularization

Y

Increase the number of units in each hidden layer

N

You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

Increase the regularization parameter lambda

Y

Decrease the regularization parameter lambda

N

Get more training data

Y

Use a bigger neural network

N

Practical aspects of deep learning的更多相关文章

  1. [C2W1] Improving Deep Neural Networks : Practical aspects of Deep Learning

    第一周:深度学习的实用层面(Practical aspects of Deep Learning) 训练,验证,测试集(Train / Dev / Test sets) 本周,我们将继续学习如何有效运 ...

  2. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  3. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  4. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  5. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization(第一周)深度学习的实践层面 (Practical aspects of Deep Learning)

    1. Setting up your Machine Learning Application 1.1 训练,验证,测试集(Train / Dev / Test sets) 1.2 Bias/Vari ...

  6. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  7. 最实用的深度学习教程 Practical Deep Learning For Coders (Kaggle 冠军 Jeremy Howard 亲授)

    Jeremy Howard 在业界可谓大名鼎鼎.他是大数据竞赛平台 Kaggle 的前主席和首席科学家.他本人还是 Kaggle 的冠军选手.他是美国奇点大学(Singularity Universi ...

  8. Why Deep Learning Works – Key Insights and Saddle Points

    Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. Spring Boot框架 - 数据访问 - 整合Mybatis

    一.新建Spring Boot项目 注意:创建的时候勾选Mybatis依赖,pom文件如下 <dependency> <groupId>org.mybatis.spring.b ...

  2. 基于XML装配bean的解析-Bean的作用域

    一.Bean的种类1.普通bean:<bean  id=""  class="A"> ,spring直接创建A实例,并返回. 2.FactoryBe ...

  3. 自己常用的Linux命令和Hadoop命令

    记录自己常用的Linux命令: ss的启动命令:ssserver -c /etc/shadowsocks.json jupyter notebook的启动命令:jupyter notebook --a ...

  4. Go流程结构(for)

    一.程序的流程结构 程序的流程控制结构一共有三种:顺序结构,选择结构,循环结构. 顺序结构:代码从上向下逐行的执行 选择结构:条件满足,某些代码才会被执行.0-1次 if语句,switch语句 循环结 ...

  5. EFCore.BulkExtensions Demo

    最近做了一个项目,当用EF传统的方法执行时,花时4小时左右,修改后,时间大大减少到10分钟,下面是DEMO实例 实体代码: public class UserInfoEntity { [Key] pu ...

  6. java多线程信息共享

    上篇文章知识介绍了多线程的创建和启动问题,各个子线程和子线程或者说子线程和main线程没有信息的交流,这篇文章主要探讨线程之间信息共享以及交换问题.这篇文章主要以一个卖票例子来展开. 继承Thread ...

  7. 【C语言】计算N名同学的某门功课的平均成绩

    分析: 循环输入number只童鞋的成绩,累加为sum,最后输出sum/number即可! 代码: #include<stdio.h> int main() { , score;//sco ...

  8. 【MySQL】索引相关

    " 目录 普通索引 唯一索引 主键索引 组合索引 正确使用索引的情况 索引的注意事项 执行计划 axplain 慢日志记录 分页性能相关方案 索引是数据库中专门用于帮助用户快速查找数据的一种 ...

  9. Java中Volatile关键字详解(转载)

    转载自:https://www.cnblogs.com/zhengbin/p/5654805.html 一.基本概念 先补充一下概念:Java 内存模型中的可见性.原子性和有序性. 可见性: 可见性是 ...

  10. Ubuntu 安装 uWSGI

    uWSGI官方网址: https://pypi.org/project/uWSGI/ 使用如下命令安装: pip install uWSGI 报如下错: Collecting uWSGI Using ...