If your Neural Network model seems to have high variance, what of the following would be promising things to try?

Make the Neural Network deeper

N

Get more training data

Y

Get more test data

N

Add regularization

Y

Increase the number of units in each hidden layer

N

You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

Increase the regularization parameter lambda

Y

Decrease the regularization parameter lambda

N

Get more training data

Y

Use a bigger neural network

N

Practical aspects of deep learning的更多相关文章

  1. [C2W1] Improving Deep Neural Networks : Practical aspects of Deep Learning

    第一周:深度学习的实用层面(Practical aspects of Deep Learning) 训练,验证,测试集(Train / Dev / Test sets) 本周,我们将继续学习如何有效运 ...

  2. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  3. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  4. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  5. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization(第一周)深度学习的实践层面 (Practical aspects of Deep Learning)

    1. Setting up your Machine Learning Application 1.1 训练,验证,测试集(Train / Dev / Test sets) 1.2 Bias/Vari ...

  6. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  7. 最实用的深度学习教程 Practical Deep Learning For Coders (Kaggle 冠军 Jeremy Howard 亲授)

    Jeremy Howard 在业界可谓大名鼎鼎.他是大数据竞赛平台 Kaggle 的前主席和首席科学家.他本人还是 Kaggle 的冠军选手.他是美国奇点大学(Singularity Universi ...

  8. Why Deep Learning Works – Key Insights and Saddle Points

    Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. 概率dp poj 3071

    题目首先给出一个n,表示比赛一共进行n轮,那么队伍就有2^n只队伍输入一个2^n*2^n的矩阵,p[i][j]代表队伍i打败队伍j的概率dp[i][j]代表第i轮比赛的时候,队伍j赢的概率首先初始化时 ...

  2. mybatis--Spring整合mybatis

    今天学习了mybatis整合Spring开发,做了一个mybatis+spring的小实例 (1)首先,创建数据库my,并在数据库my中创建表user create database my; use ...

  3. maven私服搭建&使用

    Maven私服搭建教程 一.nexus安装 1,解压安装包 安装包下载地址 2,以管理员身份打开cmd 3,进入到nexus的bin目录 (1) 安装:nexus install (2) 启动:nex ...

  4. report_delay_calculation/check_timing/report_annotated_parasitics/report_analysis_coverge

    如何debug 一颗cell 或一段net 的delay,  常用的办法是用report_delay_calculation 报这颗cell 或这段net, 会得到形式如下的report, 从该rep ...

  5. C语言学习建议!8年编程开发经验

    C语言是几乎所有编程语言的先驱与灵感的来源,Perl,PHP,Python和Ruby都是用它写的,同样什么Microsoft Windows,Mac OS X,还有GNU/Linu这些操作系统,都是靠 ...

  6. workflow1

    var workflowDef = { start:{ fn:"begin", //对应处理方法可以在内部定义,也可以在外部定义 next:["task1",& ...

  7. JVM系列(三)之GC

    什么是GC Java GC(Garbage Collection,垃圾收集,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码,对内存泄 ...

  8. cnpm - 解决 " cnpm : 无法加载文件 C:\Users\93457\AppData\Roaming\npm\cnpm.ps1,因为在此系统上禁止运行脚本。有关详细信息 。。。 "

    1.在win10 系统中搜索框 输入 Windos PowerShell选择 管理员身份运行 2,打开了powershell命令行之后,输入 set-ExecutionPolicy RemoteSig ...

  9. Halcon blob分析基本处理步骤

    Halcon,blob分析 应用场景,二值化后的灰度图像对比度清晰 基本处理流程 1 读取图片 read_image(变量名,'路径') //halcon字符串使用单引号'' 2 预处理 2.1 RO ...

  10. PyQt5数据可视化

    1.下载PyQtGraph模块 Windows上下载: pip install pyqtgraph Linux上下载: pip3 install pyqtgraph MacOS上下载: pip3 in ...