李宏毅老师机器学习课程笔记_ML Lecture 2: Where does the error come from?
引言:
最近开始学习“机器学习”,早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程。今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象。
视频链接(bilibili):李宏毅机器学习(2017)
另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes)
所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教。
一、误差来自哪里?该如何处理这些误差?
从第一课可以知道,越复杂的模型并不一定会带来越低的误差(error)。误差来自两方面:
- 偏差(bias)
- 方差(variance)
如果可以诊断误差的来源,就可以选择适当的方法来改进自己的模型。
看到这里我有一些困惑,误差、偏差、方差听起来太像了,到底有什么区别呢?

【此处与机器学习无关:图1真的挺难得,不知不觉有一种管理方面感触的代入感,左上角图表示好的领导(战略决策层)与好的员工(战术执行层)的配合,右上角图表示好的领导(战略决策层)与差的员工(战术执行层)的配合,左下角图表示差的领导(战略决策层)与好的员工(战术执行层)的配合,右下角图表示差的领导(战略决策层)与差的员工(战术执行层)的配合。从这方面可以看出,一个好的战略决策有多么重要!】


简单的模型(如一次方程)所带来的方差比复杂模型(如五次方程)所带来的方差要小如图4。

虽然简单的模型有助于控制方差,但如果一开始选定的范围并没有包含f^,那么f*所带来的偏差也有很大可能带来误差。如图5。

- 如果误差来自于偏差,那么往往在训练集上欠拟合(underfitting)
- 如果误差来自于方差,那么往往在训练集上过拟合(overfitting)

机器学习需要弄清楚一件事情:误差来自哪里?如果是偏差,那么该怎么办?如果是方差,那么又该怎么办?如图7。 - 当欠拟合的时候(数据无法很好拟合f),那就来自偏差,这时应该重新设计模型,因为f^没有被f所包含
- 当过拟合的时候,那误差就来自方差,这时候有两种办法:
- 增加数据:几乎是万灵丹,不会伤害偏差,但有一个缺点是成本太高
- 正则化:可以是曲线变得平滑

二、选择模型的过程中需要注意的事情
通常我们都可以在偏差和方差之间找到一个平衡,从而找到合适的模型。但一定不要做这样的事情:
直接用全部训练集直接选择模型,这样你在测试集上得到的误差并不能反映真实测试集上的误差。如图8。

那么应该怎么做?
- 交叉验证:将训练集分为训练集和验证集(validation set),先用这两个集合选择出误差比较小的模型,然后拿自己的测试集来比较误差的大小。如果觉得第一步本身训练集并不大还要再分的话,可以在选好模型后在整个训练集上再确认一下。这样你的测试集基本上可以反映出模型在真正测试集的误差。如图9。

如果你担心自己分的测试集可能带来偏差的话,可以做N次交叉验证,将训练集分为多组小训练集1,小训练集2,小验证集,得到误差最小的模型后再在全量的训练集上继续训练即可。如图10。

在这里李宏毅老师特别提到,在训练集上选好模型后,如果测试集上表现偏差比较大,不要再返回去选择那些误差表现大的模型,因为他们可能在private测试集上表现出的误差可能会更大。
李宏毅老师机器学习课程笔记_ML Lecture 2: Where does the error come from?的更多相关文章
- 李宏毅老师机器学习课程笔记_ML Lecture 3-1: Gradient Descent
引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML- ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: 回归案例研究
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-2: Why we need to learn machine learning?
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- 【读书笔记与思考】Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
随机推荐
- IDEA系列(九)Intellij IDEA界面介绍 - 哲也的博客
原文出处:https://github.com/judasn/IntelliJ-IDEA-Tutorial 首次打开 重点说明: IntelliJ IDEA 是没有类似 Eclipse 的工作空间的概 ...
- CPU踩点图
CPU占比探测用js来检查当前系统cpu的占用比例,通过 setTimeout 的方式探测 CPU 的大小,这样可以实现网页游戏中动画等耗时操作的自动调节.这个原理是很多人都知道的,就是用JS来踩点. ...
- yii框架通过控制台命令创建定时任务
假设Yii项目路径为 /home/apps 1. 创建文件 /home/apps/web/protected/commands/console.php $yii = '/home/apps/frame ...
- POI之下载模板(或各种文件)
该例基于Nutz框架 前台代码: <a href="" id="errordownload" onclick="downloadErrorLog ...
- 在线选题系统完善篇(PHP)
第一篇: 选题在线提交系统(html+JS+PHP) 这是当时根据需求做的一个简单的版本,只能适用于这一个场景,而且题目等一系列数据都不能改.然后结束后,我又对重新写了一个有后台管理的选题系统.相对于 ...
- 前端笔记--css样式笔记
一.浮动 定位布局 1.浮动布局 left 元素向左浮动 right 元素向右浮动 例如:设置2个按钮,要使得按钮在同一行位置摆放,可以使用浮动,令按钮浮动到右边.注意,先设置float的按钮,例如: ...
- p标签内不能嵌套块级标签
今天突然发现一个问题,那就是p标签内不能嵌套块级标签 例如: <p><p></p></p> 会被浏览器解析成 我又把 div 嵌套在里面,发现还是这样 ...
- 从零开始打造 Mock 平台 - 核心篇
前言 最近一直在捣鼓毕设,准备做的是一个基于前后端开发的Mock平台,前期花了很多时间完成了功能模块的交互.现在进度推到如何设计核心功能,也就是Mock数据的解析. 根据之前的需求设定加上一些思考,用 ...
- (27)ASP.NET Core .NET标准REST库Refit
1.简介 Refit是一个受到Square的Retrofit库(Java)启发的自动类型安全REST库.通过HttpClient网络请求(POST,GET,PUT,DELETE等封装)把REST AP ...
- 2020ubuntu1804server编译安装redis5笔记(二)配置redis
前一篇笔记记录了ubuntu1804server编译安装redis5,接下来要配置redis5了 网址:https://www.cnblogs.com/qumogu/p/12435694.html 第 ...