还是点分治

树上问题真有趣ovo,这道题统计模3为0的距离,可以把重心的子树分开统计,也可以一次性统计,然后容斥原理减掉重复的。。

其他的过程就是点分治的板子啦。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 50005;
int n, cnt, rt, ans, sum, res, head[N], size[N], r[3], cur[3], dis[N];
bool vis[N];
struct Edge{ int v, next, w; } edge[N<<1]; void addEdge(int a, int b, int c){
edge[cnt].v = b, edge[cnt].w = c, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs(int s, int fa){
int mp = 0;
size[s] = 1;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa || vis[u]) continue;
dfs(u, s);
size[s] += size[u];
mp = max(mp, size[u]);
}
mp = max(mp, sum - size[s]);
if(mp < ans) ans = mp, rt = s;
} void getDis(int s, int fa){
res += r[(3 - dis[s]) % 3];
cur[dis[s]] ++;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa || vis[u]) continue;
dis[u] = (dis[s] + edge[i].w) % 3;
getDis(u, s);
}
} void calc(int s){
r[0] = 1;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
full(cur, 0);
dis[u] = edge[i].w % 3;
getDis(u, s);
for(int j = 0; j < 3; j ++) r[j] += cur[j];
}
full(r, 0);
} void solve(int s){
vis[s] = true, calc(s);
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
ans = INF, sum = size[u];
dfs(u, 0), solve(rt);
}
} int main(){ full(head, -1);
n = read();
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read(), c = read() % 3;
addEdge(u, v, c), addEdge(v, u, c);
}
ans = INF, sum = n;
dfs(1, 0), solve(rt);
res = (res << 1) + n;
int t = gcd(res, n * n);
printf("%d/%d\n", res / t, n * n / t);
return 0;
}

洛谷P2634 聪明可可的更多相关文章

  1. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  2. Bzoj2152/洛谷P2634 聪聪可可(点分治)

    题面 Bzoj 洛谷 题解 点分治套路走一波,考虑\(calc\)函数怎么写,存一下每条路径在\(\%3\)意义下的路径总数,假设为\(tot[i]\)即\(\equiv i(mod\ 3)\),这时 ...

  3. 洛谷 P2634 [国家集训队]聪聪可可 解题报告

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一 ...

  4. 洛谷 P2634 [国家集训队]聪聪可可-树分治(点分治,容斥版) +读入挂+手动O2优化吸点氧才过。。。-树上路径为3的倍数的路径数量

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...

  5. 洛谷P2634 [国家集训队]聪聪可可 (点分治)

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  6. AC日记——【模板】点分治(聪聪可可) 洛谷 P2634

    [模板]点分治(聪聪可可) 思路: 点分治: (感谢灯神) 代码: #include <bits/stdc++.h> using namespace std; #define maxn 2 ...

  7. 洛谷 P2634 聪聪可可 —— 树形DP / 点分治

    题目:https://www.luogu.org/problemnew/show/P2634 今天刚学了点分治,做例题: 好不容易A了,结果发现自己写的是树形DP...(也不用找重心)(比点分治快) ...

  8. 洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  9. [bzoj2152] [洛谷P2634] 聪聪可可

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一般情况下石头剪刀布就好 ...

随机推荐

  1. AEAI CRM V1.6.0 升级说明,开源客户关系管理系统

    1 升级说明 AEAI CRM v1.6.0版是AEAI CRM v1.5.2版客户关系管理系统的升级版本,本次版本是基于AEAI DP v3.8.0_20170228进行打包部署的,升级内容主要是针 ...

  2. selenium-确定找到的element唯一(三)

    在python + selenium 中经常会遇到找到的元素不唯一,导致定位到的元素不是预期的或者定位不到元素 解决方法:只要在页面进行确认找到的元素唯一后,再进行操作 页面确认方法: 1.通过htm ...

  3. Docker 教程(一)

    Docker 使用客户端-服务器 (C/S) 架构模式,使用远程API来管理和创建Docker容器. Docker 容器通过 Docker 镜像来创建. 容器与镜像的关系类似于面向对象编程中的对象与类 ...

  4. Linux学习历程——Centos 7 mkdir命令

    一.命令介绍 mkdir 命令用于创建空白目录格式为“mkdir [选项] 目录”, 除了能够创建单个空白目录,还能结合 -p 参数来递归创建具有嵌套层叠关系的文件目录. -------------- ...

  5. Unity2018 Open C# Project Error

    错误日志 升级到Unity2018之后,使用 Open C# Project 打开VS工程,出现报错,无法启动VS. 错误日志如下: ArgumentException: Value does not ...

  6. Win32 API翻译

    这是从MSDN里面的Win32 SDK API函数.结构.通知.消息等等超过3000个.其中一半是整理自别人翻译. http://files.cnblogs.com/files/sishenzaixi ...

  7. linux 磁盘IO测试工具:FIO (同时简要介绍dd工具测试)

    FIO是测试IOPS的非常好的工具,用来对硬件进行压力测试和验证.磁盘IO是检查磁盘性能的重要指标,可以按照负载情况分成照顺序读写,随机读写两大类. 目前主流的第三方IO测试工具有fio.iomete ...

  8. 龙尚 U9300C wvdial 拨号上网

    龙尚 U9300C    7模   4G LTE   (国内全网通) 接入linux系统会有4个串口 其中ttyUSB2 为AT指令口 ttyUSB1 为拨号上网口 wvdial   拨号入网参数 [ ...

  9. linux-arm 安装 dotnetcore

    X86或者X64 安装.net core runtime  可以参照   https://www.cnblogs.com/nnhy/p/netcore_centos.html#4122354 而   ...

  10. Collections方法的使用

    public static void main(String[] args) { // 0.给List排序 List<Integer> list = new ArrayList<In ...