题目描述

“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内一支股票每天的出售价(2162^{16}216范围内的正整数),你可以选择在哪些天购买这支股票。每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买次数。

这里是某支股票的价格清单:

日期 1,2,3,4,5,6,7,8,9,10,11,12 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8, 9 ,10 ,11, 121,2,3,4,5,6,7,8,9,10,11,12

价格68,69,54,64,68,64,70,67,78,62,98,87 68 ,69 ,54, 64,68 ,64 ,70 ,67 ,78 ,62, 98, 8768,69,54,64,68,64,70,67,78,62,98,87

最优秀的投资者可以购买最多444次股票,可行方案中的一种是:

日期 2,5,6,10 2 , 5 , 6 ,102,5,6,10

价格 69,68,64,62 69, 68 ,64 ,6269,68,64,62

输入输出格式

输入格式:

第1行: N(1≤N≤5000)N(1 \le N \le 5000)N(1≤N≤5000),股票发行天数

第2行: NNN个数,是每天的股票价格。

输出格式:

两个数:
最大购买次数和拥有最大购买次数的方案数(≤231 \le 2^{31}≤231)当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这222种方案被认为是相同的。

输入输出样例

输入样例#1: 复制

12
68 69 54 64 68 64 70 67 78 62 98 87
输出样例#1: 复制

4 2

题解:

注意这不是LIS,因为它还要求出来方案数,而LIS的DP数组里面只是求出来了以dp[i]以第i个数结尾的LIS,而且这道题还要求我们去重<_>

因此我参考了一下别人的博客https://wjyyy.blog.luogu.org/solution-p1108

  1. 如果一个数列的第一个数与另一个数列的第一个数相同,那么现在可以判断它们相等,即可以把其中一个删掉(在代码中的处理是t[i]=0t[i]=0t[i]=0)。当不同的数接在它的后面时,又可以将它们判断为两个数列,这是不互相影响的。因为两个数列都可以由这个相等的数列转移而来
  2. 如果一个数列的第一个数与另一个数列的第一个数不同,那么它们不等,且无论后面添加什么,都不相等,即不删去,则按照普通的判断继续做。

由上面的两点,我们已经把重复的删掉,这样可以防止重复计数

tiptiptip:本题如果出现在考试中,请不要冒险定义int,因为maxint是231−12^{31}-1231−1,会爆int,这个题暂不做深究

上代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=1000005;
7 int v[maxn],dp[maxn],t[maxn];
8 int main()
9 {
10 int n,m,maxx=0;
11 scanf("%d",&n);
12 m=n;
13 for(int i=1;i<=n;++i)
14 scanf("%d",&v[m--]);
15 for(int i=1;i<=n;++i)
16 {
17 dp[i]=1;
18 for(int j=1;j<i;++j)
19 {
20 if(v[j]<v[i] && dp[j]+1>dp[i])
21 dp[i]=dp[j]+1;
22 }
23 maxx=max(maxx,dp[i]);
24
25 for(int j=1;j<i;++j)
26 {
27 if(dp[j]==dp[i] && v[j]==v[i])
28 t[j]=0;
29 else if(dp[j]+1==dp[i] && v[j]<v[i])
30 t[i]+=t[j];
31 }
32 if(!t[i]) t[i]=1;
33 }
34 int sum=0;
35 for(int i=1;i<=n;++i)
36 {
37 if(dp[i]==maxx)
38 sum+=t[i];
39 }
40 printf("%d %d\n",maxx,sum);
41 }

P1108 低价购买(DP)的更多相关文章

  1. P1108 低价购买 (DP)

    题目 P1108 低价购买 解析 这题做的我身心俱惫,差点自闭. 当我WA了N发后,终于明白了这句话的意思 当二种方案"看起来一样"时(就是说它们构成的价格队列一样的时候),这2种 ...

  2. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  3. Luogu P1108 低价购买 DP

    第一问求最长下降子序列,不提: 第二问:借鉴了最短路的方法??? 我们求出来了每个位置的最长下降子序列的长度,那么刻意这样这样转移 if f[i]==f[j]+1&&a[i]<a ...

  4. 洛谷 P1108 低价购买 解题报告

    P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...

  5. 洛谷 P1108 低价购买

    P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...

  6. P1108 低价购买——最长下降子序列+方案数

    P1108 低价购买 最长下降子序列不用多讲:关键是方案数: 在求出f[i]时,我们可以比较前面的f[j]; 如果f[i]==f[j]&&a[i]==a[j] 要将t[j]=0,去重: ...

  7. 低价购买 dp

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  8. 洛谷P1108 低价购买

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  9. 题解——P1108低价购买(DP)

    第一问是最长下降子序列,n很小,n^2可过,注意最长下降子序列的枚举顺序即可 ;i<=n;i++)//不要写错 ;j<i;j++)//不要打成<= ) b[i]=b[j]+; 第二问 ...

随机推荐

  1. LeetCode703 流中第k大的元素

    前言: 我们已经介绍了二叉搜索树的相关特性,以及如何在二叉搜索树中实现一些基本操作,比如搜索.插入和删除.熟悉了这些基本概念之后,相信你已经能够成功运用它们来解决二叉搜索树问题. 二叉搜索树的有优点是 ...

  2. SpringBoot 集成Shiro之使用Redis缓存授权认证信息

    因为用户认证与授权需要从数据库中查询并验证信息,但是对于权限很少改变的情况,这样不断从数据库中查询角色验证权限,对整个系统的开销很大,对数据库压力也随之增大.因此可以将用户认证和授权信息都缓存起来,第 ...

  3. 【Oracle】转:通过案例学调优之--Oracle Time Model(时间模型)

    转自:http://blog.51cto.com/tiany/1596012 通过案例学调优之--Oracle Time Model(时间模型) 数据库时间 优化不仅仅是缩短等待时间.优化旨在缩短最终 ...

  4. APP测试之Monkey测试

    一.简介 1.什么是Monkey测试? Monkey testing,也有人叫做搞怪测试.就是用一些稀奇古怪的操作方式去测试被测试系统,以测试系统的稳定性.Monkeytest,一般指这样的测试活动, ...

  5. 面试官问我CAS,我一点都不慌

    文章以纯面试的角度去讲解,所以有很多的细节是未铺垫的. 文章中写到的处理线程安全的思路每一项技术都可以写出一篇文章,AQS.Synchronized.Atomic...周末肝起来!下周再来给大家安排! ...

  6. Ubuntu安装记录

    好吧,这成功地让我想起了那些边肯红薯边黑苹果的早晨······ 本人纯属Windows用腻,后期请大佬多多指教 前面因为没U盘而碰壁的内容在此不说,接下来因为太兴奋,关于安装U盘制作没记录什么.最终, ...

  7. JVM重新认识(一)oop-klass模型--HSDB使用验证

    一:oop-kclass模型 思考:我们平时写的java类编译成.class文件,JVM加载.class文件,那么加载.class文件之后在JVM中就是oop-kclass(C++)模型形式存在的. ...

  8. 笔记 | 吴恩达新书《Machine Learning Yearning》

    这本书共112页,内容不多,偏向于工程向,有很多不错的细节,在此记录一下. 0 书籍获取 关注微信公众号"机器学习炼丹术",回复[MLY]获取pdf 1 测试集与训练集的比例 2 ...

  9. Memcached与Redis对比及其优劣分析

    国外讨论 本文主要总结缓存Redis和Memcached的区别,总结之前先参考外国知乎上的一篇问答:<Is memcached a dinosaur in comparison to Redis ...

  10. python基础之 列表、元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码

    本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...