hdu3033 I love sneakers!
There are several brands of sneakers that Iserlohn wants to collect, such as Air Jordan and Nike Pro. And each brand has released various products. For the reason that Iserlohn is definitely a sneaker-mania, he desires to buy at least one product for each brand.
Although the fixed price of each product has been labeled, Iserlohn sets values for each of them based on his own tendency. With handsome but limited money, he wants to maximize the total value of the shoes he is going to buy. Obviously, as a collector, he
won’t buy the same product twice.
Now, Iserlohn needs you to help him find the best solution of his problem, which means to maximize the total value of the products he can buy.
product with three positive integers 1<=a<=k, b and c, 0<=b,c<100000, meaning the brand’s number it belongs, the labeled price, and the value of this product. Process to End Of File.
1 4 6
2 5 7
3 4 99
1 55 77
2 44 66
这题属于分组背包,但和多个取一个的不同,这里是至少取一个,可以设dp[i][j]表示前i组花费j元所能得到的最大价值,dp[i][j]先都初始化为-1,然后把dp[0][i]都记为0,在判断的时候要加上两个if,就是如果转移过来的状态是-1,那么这个状态已经不能成立了,所以当前这个状态肯定不能成立,这一点可以动笔画一下。
#include<stdio.h>
#include<string.h>
int max(int a,int b){
return a>b?a:b;
}
int dp[13][10060],num[13];
struct node{
int w,v;
}a[13][105];
int main()
{
int n,m,i,j,k,lei,c,d,e;
while(scanf("%d%d%d",&n,&m,&lei)!=EOF)
{
memset(a,0,sizeof(a));
memset(num,0,sizeof(num));
for(i=1;i<=n;i++){
scanf("%d%d%d",&c,&d,&e);
num[c]++;a[c][num[c]].w=d;a[c][num[c]].v=e;
}
memset(dp,-1,sizeof(dp));
//for(i=0;i<=lei;i++)dp[i][0]=0;注意:这里不能把每一行的dp[i][0]记为0,因为这样前面一行未满足至少取1个的条件是-1的话,那么这行也应该是-1,不是0.
for(i=0;i<=m;i++)dp[0][i]=0;
for(i=1;i<=lei;i++){
for(k=1;k<=num[i];k++){
for(j=m;j>=a[i][k].w;j--){
if(dp[i][j-a[i][k].w]!=-1)//这里两个if不能换顺序,因为第一个if是对这一组的多个背包进行挑选,
dp[i][j]=max(dp[i][j],dp[i][j-a[i][k].w]+a[i][k].v);//如果先进行第二个if,那么可能当前的dp[i][j]不再为-1,
if(dp[i-1][j-a[i][k].w]!=-1)//然后运行第一个if的时候可能会产生冲突,
dp[i][j]=max(dp[i][j],dp[i-1][j-a[i][k].w]+a[i][k].v);//即原来不能成立的状态变为可能然后再进行背包运算 。
}
}
}
if(dp[lei][m]<0)printf("Impossible\n");
else printf("%d\n",dp[lei][m]);
}
return 0;
}
hdu3033 I love sneakers!的更多相关文章
- hdu3033 I love sneakers! 分组背包变形
分组背包要求每一组里面只能选一个,这个题目要求每一组里面至少选一个物品. dp[i, j] 表示前 i 组里面在每组至少放进一个物品的情况下,当花费 j 的时候,所得到的的最大价值.这个状态可以由三个 ...
- HDU3033 I love sneakers!———分组背包
这题的动态转移方程真是妙啊,完美的解决了每一种衣服必须买一件的情况. if(a[x][i-c[x][j].x]!=-1) a[x][i]=max(a[x][i],a[x][i-c[x][j].x]+c ...
- hdu3033 I love sneakers! 分组背包变形(详解)
这个题很怪,一开始没仔细读题,写了个简单的分组背包交上去,果不其然WA. 题目分析: 分组背包问题是这样描述的:有K组物品,每组 i 个,费用分别为Ci ,价值为Vi,每组物品是互斥的,只能取一个或者 ...
- HDU-3033 I love sneakers! 题解
题目大意 有 n 个物品,分成了 k 组,每个物品有体积和价值,把 n 个物品放到容量为 V 的背包中,保证每组至少放一件,求能获得的最大价值,如果不能实现,输出"Impossible&qu ...
- I love sneakers!(分组背包HDU3033)
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HD3033I love sneakers!(分组背包+不懂)
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3033 I love sneakers! 分组背包
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3033 I love sneakers!
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu3033I love sneakers! (分组背包,错了很多次)
Problem Description After months of hard working, Iserlohn finally wins awesome amount of scholarshi ...
随机推荐
- 为啥使用innodb_flush_method=o_direct 就能减轻io压力呢
为啥使用innodb_flush_method=o_direct 就能减轻io压力呢
- 【ORA】ORA-4031错误分析和解决办法
1. ORA-4031错误的原因,一般是大量的hard parse导致了shared pool中的free list中产生大量的内存小碎片,当一个需要很大内存来进行hard parse的sql语句到来 ...
- Spring框架之事务源码完全解析
Spring框架之事务源码完全解析 事务的定义及特性: 事务是并发控制的单元,是用户定义的一个操作序列.这些操作要么都做,要么都不做,是一个不可分割的工作单位.通过事务将逻辑相关的一组操作绑定在一 ...
- 登陆到 SAP 系统后的用户出口
增强类型:smod 增强名称:SUSR0001 组件(退出功能模块):EXIT_SAPLSUSF_001 功能:用户每次登陆SAP系统后都会调用这个SUSR0001增强,可以在FUNCTION EXI ...
- SAP 摘录数据集
要在报表中创建并填充摘录数据集,需要执行三步骤:1.将要在摘录数据集中使用的记录类型定义为字段组FIELD-GROUPS该语句定义了字段组,字段组可以将几个字段组合到一个名称下,字段组不为字段保留存储 ...
- Py其他内置函数,文件修改
其他内置函数 1.abs函数,取绝对值 print(abs(-1)) 2.all函数,判断可迭代对象是否全为真,有假直接假 假:0,'',None print(all([1,2,'1'])) prin ...
- Samba共享工具安装
Samba 是一种在局域网上共享文件的一种通信协议,它为局域网内的不同计算机之间提供文件的共享服务. (1)下载并安装 Samba 工具. 确定 Ubuntu 已连接到互联网, 执行如下命令下载 Sa ...
- Windows server 2008常用优化设置
1. 如何取消开机按 CTRL+ALT+DEL登录? 控制面板→管理工具→本地安全策略→本地策略→安全选项→交互式登录:无须按CTRL+ALT+DEL→启用. 2. 如何取消关机时出现的关机理由选择项 ...
- jQuery 实现复制功能
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- token的分层图如下
基于 token 的多平台身份认证架构设