给定一个N行M列的01矩阵A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:

dist(A[i][j],A[k][l])=|i−k|+|j−l|dist(A[i][j],A[k][l])=|i−k|+|j−l|

输出一个N行M列的整数矩阵B,其中:

B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1dist(A[i][j],A[x][y])B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1⁡dist(A[i][j],A[x][y])

输入格式

第一行两个整数n,m。

接下来一个N行M列的01矩阵,数字之间没有空格。

输出格式

一个N行M列的矩阵B,相邻两个整数之间用一个空格隔开。

数据范围

1≤N,M≤10001≤N,M≤1000

输入样例:

3 4
0001
0011
0110

输出样例:

3 2 1 0
2 1 0 0
1 0 0 1

题意理解:B[i]对应原A[i]中为0的点到最近的为1的点的曼哈顿距离。
思路:bfs,将原来地图中为1的点全部先入队,然后展开广搜,碰到不为1的点就入队,并且标记它的最近曼哈顿距离为基点(从队列中取出来的点)的距离加1.因为刚开始将所有的地图上为1的点标记为1,所以最后输出时要减1.
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
int vis[][];
char g[][];
int dx[]={,,,-},dy[]={,-,,};
int n,m;
queue<P>q;
void bfs()
{
while(q.size())
{
P st=q.front();q.pop();
for(int i=;i<;i++)
{
int x=st.first+dx[i],y=st.second+dy[i];
if(x>=&&x<n&&y>=&&y<m&&!vis[x][y])
{
vis[x][y]=vis[st.first][st.second]+;
q.push({x,y});
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
getchar();
for(int j=;j<m;j++)
{
scanf("%c",&g[i][j]);
vis[i][j]=g[i][j]-'';
if(vis[i][j])
q.push({i,j});
}
}
bfs();
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
printf("%d ",vis[i][j]-);
}
printf("\n");
}
return ; }

acwing 173. 矩阵距离(bfs)的更多相关文章

  1. AcWing:173. 矩阵距离(bfs)

    给定一个N行M列的01矩阵A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为: dist(A[i][j],A[k][l])=|i−k|+|j−l|dist(A[i][j],A[k][l]) ...

  2. [BZOJ2252]矩阵距离(BFS)

    题意 输入矩阵m行n列(m<=500,n<=500),只含0.1,输出离每个元素距离最近的1的距离,其中距离定义为D(aij,akl)=abs(i-k)+abs(j-l). 示例: 输入: ...

  3. AcWing P173 矩阵距离 题解

    Analysis 就是一个裸的广搜,每次从是1的点开始找就好啦~~~ #include<iostream> #include<cstdio> #include<cstri ...

  4. BZOJ2252: [2010Beijing wc]矩阵距离

    题解: 我脑子里都是翔??? bfs一下就行了 我居然还想什么kd tree!真是too naive,,, #include<cstdio> #include<cstdlib> ...

  5. BZOJ 2252: [2010Beijing wc]矩阵距离

    题目 2252: [2010Beijing wc]矩阵距离 Time Limit: 10 Sec  Memory Limit: 256 MB Description 假设我们有矩阵,其元素值非零即1 ...

  6. Bzoj 2252: [2010Beijing wc]矩阵距离 广搜

    2252: [2010Beijing wc]矩阵距离 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 563  Solved: 274[Submit][ ...

  7. 「CH2501」 矩阵距离 解题报告

    CH2501 矩阵距离 描述 给定一个N行M列的01矩阵 A,\(A[i][j]\) 与 \(A[k][l]\) 之间的曼哈顿距离定义为: \(dist(A[i][j],A[k][l])=|i-k|+ ...

  8. Acwing 蛇形矩阵

    Acwing 蛇形矩阵 package javaqq; import java.util.Scanner; public class 蛇形 { public static void main(Stri ...

  9. 2501 矩阵距离 (bfs)

    描述 给定一个N行M列的01矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为: dist(A[i][j],A[k][l])=|i-k|+|j-l| 输出一个N行M列的整数矩阵B,其 ...

随机推荐

  1. Python并发编程理论篇

    Python并发编程理论篇 前言 其实关于Python的并发编程是比较难写的一章,因为涉及到的知识很复杂并且理论偏多,所以在这里我尽量的用一些非常简明的语言来尽可能的将它描述清楚,在学习之前首先要记住 ...

  2. elasticsearch7.6 安装 并且开启外网访问,真的好累。

    下载 下载页面 https://www.elastic.co/cn/downloads/elasticsearch wget https://artifacts.elastic.co/download ...

  3. Oracle expdp导出分区表,query条件带有rownum

    Oracle expdp导出分区表,query条件带有rownum 前言 在做数据脱敏的时候,对一张刚好是分区表的表做导出,为了只取出部分数据看是否数据可以正常脱敏,在query中带上rownum. ...

  4. NOI Online #3 提高组 T1水壶 题解

    题目描述 有 n 个容量无穷大的水壶,它们从 1∼n 编号,初始时 i 号水壶中装有 Ai 单位的水. 你可以进行不超过 k 次操作,每次操作需要选择一个满足 1≤x≤n−1 的编号 x,然后把 x ...

  5. Python-读取文件的大小

    1.python读取文件以及文件夹的大小 1. os.path.getsize(file_path):file_path为文件路径 import os os.path.getsize('d:/svn/ ...

  6. Python GIL(全局解释器锁)

    理解并发和并行 并行:多个CPU同时执行多个不同的多任务. 就像两个程序(进程),这两个程序是真的在不同的CPU内同时执行多个任务. 并发:CPU切换处理不同的多任务, 还是有两个程序,但只有一个CP ...

  7. day77 作业

    目录 一.完成todolist案例 二.商品页面 一.完成todolist案例 <!DOCTYPE html> <html lang="en"> <h ...

  8. 01 flask源码剖析之werkzurg 了解wsgi

    01 werkzurg了解wsgi 目录 01 werkzurg了解wsgi 1. wsgi 2. flask之werkzurg源码流程 3. 总结 1. wsgi django和flask内部都没有 ...

  9. redis(十二):Redis 集合(Set)

    Redis 集合(Set) Redis 的 Set 是 String 类型的无序集合.集合成员是唯一的,这就意味着集合中不能出现重复的数据. Redis 中集合是通过哈希表实现的,所以添加,删除,查找 ...

  10. Windows故障转移群集(WSFC)的备份和恢复

    使用wbadmin进行备份和恢复将C盘数据备份到E盘查看备份的版本以及包含的items模拟群集角色被误删除进行恢复操作检查恢复的效果 WSFC群集的备份和恢复功能是使用Windows Server B ...