一、Redis的内存配置

1,Redis配置内存为多少合适?

默认:如果不设置最大内存大小或者设置最大内存大小为0,在64为操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存。

极限情况:留出一倍内存。比如你的redis数据占用了8G内存,那么你还需要再预留8G空闲内存。也就是内存需求是16G。内存占用率低于50%是最安全的。

普通情况:正常情况下,在序列化周期内,不会更改所有数据,只会有部分数据更改,那么,预留出可能产生的更改部分的空间,就行。如果实在要说一个数据的话,一般推荐Redis设置内存为最大物理内存的75%都是安全的。

2,如何修改内存

a)配置文件修改

  redis.conf中

#设置为100M,单位是byte
maxmemory 104857600

b)命令行修改

config set maxmemory 104857600

3,查看最大内存

config get maxmemory
#或者使用
info memory

二、Redis的内存淘汰策略

1,Redis 过期策略是:定期删除+惰性删除。

  所谓定期删除,指的是 Redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。

  假设 Redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 Redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 Redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。

  惰性删除:数据到达过期时间,不做处理。等下次访问该数据时,如果未过期,返回数据;发现已过期,删除,返回不存在。

  但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 Redis 内存块耗尽了,咋整?实际上会走:内存淘汰机制。

2,内存淘汰机制

Redis内存淘汰机制有以下几个:

  • noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。
  • allkeys-lfu: 对所有key使用LFU算法进行删除。LFU:最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小。
  • volatile-lfu: 对所有设置了过期时间的key使用LFU算法进行删除。

三、手写LRU算法

  力扣题库

1,采用LinkedHashMap实现

public class Demo015_LRUCacheLinkedHashMap {

    private int capacity;
private LinkedHashMap<Integer, Integer> linkedHashMap; public Demo015_LRUCacheLinkedHashMap(int capacity) {
this.capacity = capacity;
/**
* 三个参数:capacity为容量,0.75位扩容因子,true为按照访问排序false为按照插入排序
*   重写删除尾结点的方法,一旦发现当前linkhashmap的长度大于总容量就需要删除*/
linkedHashMap = new LinkedHashMap<Integer, Integer>(capacity,0.75F,true){
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return super.size() > capacity;
}
};
} public void put(int key, int value) {
linkedHashMap.put(key, value);
} public int get(int key) {
Integer value = linkedHashMap.getOrDefault(key,-1);
return value;
}
}

2,自定义双向链表

  • 定义Node节点:key,val,next和prev
  • 定义DoubleLinkedNode管理Node结点组成头尾结点的双向链表
  • 定义hashmap存储每个结点
  • 插入时判断当前值是否已经存在hashmap中
    • 如果存在就更改当前值,删除双向链表中原来的这个值,添加新值到链表头结点并修改hashmap中当前值
    • 如果不存在当前值,判断当前容器是否满了,如果满了就删除链表尾部删除hashmap中数据。并添加新结点到链表头部和hashmap中
  • 获取时,直接从hashmap中获取。如果不存在直接返回-1,如果存在就删除链表尾部数据,更新链表头部数据为当前node
public class Demo015_LRUCache {

    class Node<K, V> {
K key;
V val;
Node next;
Node prev; public Node(){
next = prev = null;
} public Node(K key, V val) {
this.key = key;
this.val = val;
next = prev = null;
}
} class DoubleLinkedNode<K,V>{
Node head;
Node tail; public DoubleLinkedNode() {
head = new Node();
tail = new Node();
head.next = tail;
tail.prev = head;
} public void addHead(Node<K,V> node) {
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
} public void remove(Node<K,V> node) {
if (node.prev == null || node.next==null) {
return;
}
node.prev.next = node.next;
node.next.prev = node.prev;
node.next = null;
node.prev = null;
} public Node<K,V> getLast() {
if (tail.prev == head) {
return null;
}
return tail.prev;
}
} private int capacity;
private HashMap<Integer, Node<Integer,Integer>> hashMap;
private DoubleLinkedNode<Integer, Integer> doubleLinkedNode; public Demo015_LRUCache(int capacity) {
this.capacity = capacity;
hashMap = new HashMap<>();
doubleLinkedNode = new DoubleLinkedNode<>();
} public int get(int key) {
Node<Integer,Integer> node = hashMap.get(key);
if (node == null) {
return -1;
}
doubleLinkedNode.remove(node);
doubleLinkedNode.addHead(node);
return node.val;
} public void put(int key, int value) {
Node<Integer, Integer> node = hashMap.get(key);
if (node == null) { //没有添加过
if (hashMap.size() == capacity) { //达到最大值状态
//删除最后结点
Node<Integer, Integer> last = doubleLinkedNode.getLast();
doubleLinkedNode.remove(last);
hashMap.remove(last.key);
}
//添加头结点
node = new Node<>(key, value);
hashMap.put(key,node);
doubleLinkedNode.addHead(node);
}else {
//如果添加过,删除双向链表的该节点,将其修改值之后添加到头节点
doubleLinkedNode.remove(node);
node.val = value; doubleLinkedNode.addHead(node);
hashMap.put(key, node);
}
}
}

Redis的常用淘汰策略以及算法实现的更多相关文章

  1. Redis的内存淘汰策略(八)

    一:Redis的AOF是什么? 以日志的形式来记录每个写操作(读操作不记录),将Redis执行过的所有写指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构 ...

  2. redis六种内存淘汰策略学习

    当客户端会发起需要更多内存的申请,Redis检查内存使用情况,如果实际使用内存已经超出maxmemory,Redis就会根据用户配置的淘汰策略选出无用的key; 当前Redis3.0版本支持的淘汰策略 ...

  3. Redis的内存淘汰策略

    Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 ...

  4. Redis 内存满了怎么办? Redis的内存淘汰策略

    https://juejin.im/post/5d674ac2e51d4557ca7fdd70 Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限, ...

  5. Redis过期key淘汰策略

    Redis采用惰性+定期的key淘汰策略 1. Redis配置项hz定义了serverCron任务的执行周期,默认为10,即CPU空闲时每秒执行10次; 2. 每次过期key清理的时间不超过CPU时间 ...

  6. Redis:缓存淘汰策略

    将redis用做缓存是一种非常常见的手段,然而由于内存大小的限制,会导致redis在内存空间满了以后需要处理继续存入的数据.总计有以下几种策略: volatile-ttl:在设置了过期时间的数据集里, ...

  7. Redis数据缓存淘汰策略【FIFO 、LRU、LFU】

    FIFO.LFU.LRU FIFO:先进先出算法 FIFO(First in First out),先进先出.在FIFO Cache设计中,核心原则就是:如果一个数据最先进入缓存中,则应该最早淘汰掉. ...

  8. Redis系列之----Redis的过期设置及淘汰策略

    Redis的过期时间机制和内存淘汰策略    Redis的数据是存储在内存中的,而服务器的内存大小是有限制的,除非宕机,否则这些数据会一直存在,对于一些不再使用的key,也应当进行删除,否则会浪费内存 ...

  9. Redis++:Redis 内存爆满 之 淘汰策略

    前言: 我们的redis使用的是内存空间来存储数据的,但是内存空间毕竟有限,随着我们存储数据的不断增长,当超过了我们的内存大小时,即在redis中设置的缓存大小(maxmeory 4GB),redis ...

随机推荐

  1. spring再学习之AOP事务

    spring中的事务 spring怎么操作事务的: 事务的转播行为: 事务代码转账操作如下: 接口: public interface AccountDao { //加钱 void addMoney( ...

  2. 3.keepalived+脚本实现nginx高可用

    标题 : 3.keepalived+脚本实现nginx高可用 目录 : Nginx 序号 : 3 else exit 0 fi else exit 0 fi - 需要保证脚本有执行权限,可以使用chm ...

  3. 2019牛客多校第五场C generator 2(BSGS)题解

    题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...

  4. 牛客多校第五场B generator1(十进制矩阵快速幂)题解

    题意: 已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1 ...

  5. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  6. 慕课网站 & MOOC website

    慕课网站 & MOOC website MOOC, massive open online course Mooc for everyone ! 国家精品课程 & 在线学习平台 慕课平 ...

  7. 从GitHub Jobs! 看技术发展趋势! 程序员进阶必备!

    0. https://jobs.github.com/positions GitHub Jobs: 1. https://jobs.github.com/positions/38bb8dc8-b5b4 ...

  8. H5 & animation

    H5 & animation https://m.tb.cn/h.VYB7BAx?sm=51fda6 UA checker webp image & css animation CDN ...

  9. TYLER ADAMS BRADBERRY:人到中年,要学会戒掉这三点

    在一些国家的一些人当中,总会出现这样一个问题"中年危机".而到了中年,人与人间的差距似乎也变得越来越大.有人说,人到中年,是一个门槛,有的人迈过去了,有的人没迈过去.但是,其实实话 ...

  10. NGK的发行量是多少?NGK销毁机制是怎么样的?

    代币销毁(Coin Burning),是指将代币从流通中永久性去除.换句话说,被销毁的代币相当于被永久性冻结,再也无法流入市场.那为什么要进行代币销毁呢? 销毁加密货币,可以使剩余加密货币的价值升高, ...