Overview

Somehow I started preparing for the ASC competition.
When I’m trying my second demo pi, which is a program running Monte-Carlo algorithm with multi-threading tech, I encountered a question.

Question-Solution

1. Initial program

// pi.cpp

#include <iostream>
#include <fstream>
#include <omp.h>
using namespace std; fstream fin("/dev/urandom", ios::in|ios::binary); u_int32_t randomNum() {
u_int32_t ret;
fin.read((char*)&ret, sizeof(u_int32_t));
return ret;
} int main() { int64_t inCircleHits = 0;
int64_t totalHits = 1000000; #pragma omp parallel for num_threads(4) reduction(+:inCircleHits)
for (int i=1 ; i<=totalHits ; i++) {
double x=1.0*randomNum()/__UINT32_MAX__;
double y=1.0*randomNum()/__UINT32_MAX__;
if ((x*x+y*y)<=1.0) {
inCircleHits++;
}
} clog << 4.0*inCircleHits/totalHits << endl;
fin.close();
return 0;
}

Running environment and results:

LLVM-clang++ + external openMP library on macOS: 3.9969 (always 3.9+)
GCC-g++ + built-in openMP library on macOS: 10: Bus Error
GCC-g++ + built-in openMP library on linux: Segmentation fault(core dumped)

Analysis: ??? (Browse online for a couple of hours…)
Gain discovery: On the Internet tutorials & examples, the loop variables are always inititialized with 0.

2. Second Trial

At this time, I initialized the loop variable i with 0

for (int i=0 ; i<totalHits ; i++)

Running environment and results:

LLVM-clang++ + external openMP library on macOS: 3.9925 (always 3.9+)
GCC-g++ + built-in openMP library on macOS: 3.9912 (always 3.9+)
GCC-g++ + built-in openMP library on linux: Segmentation fault(core dumped)

Analysis: Errr… at least we fixed a internal exception.
But why do the answers incorrect? And why does it fails on Linux platform?
Hypothesis: Maybe std::fstream is to blame. The objects in c++ (may be) not multiThread-safe.

Trial 3

Try substitute std::fstream with the old friend FILE *
Changed all cpp to c

// pi.c

#include <stdio.h>
#include <stdlib.h>
#include <omp.h> FILE *randomFile; u_int32_t randomNum() {
u_int32_t ret;
fread((char*)(&ret), sizeof(u_int32_t), 1, randomFile);
return ret;
} int main() { randomFile = fopen("/dev/urandom", "rb");
int64_t inCircleHits = 0;
int64_t totalHits = 1000000; #pragma omp parallel for num_threads(4) reduction(inCircleHits)
for (int i=0 ; i<totalHits ; i++) {
double x=1.0*randomNum()/__UINT32_MAX__;
double y=1.0*randomNum()/__UINT32_MAX__;
if ((x*x+y*y)<=1.0) {
inCircleHits++;
}
} printf("%f", 4.0*inCircleHits/totalHits);
fclose(randomFile);
fflush(stdout);
return 0; }

Running environment and results:

LLVM-clang++ + external openMP library on macOS: 3.135 (correct)
GCC-g++ + built-in openMP library on macOS: 3.141 (correct)
GCC-g++ + built-in openMP library on linux: 3.132 (correct)

Yea. As we could see, it’s running well.

4. variable control

Let’s see what happens if we initialize loop variable i with 1

for (int i=1 ; i<=totalHits ; i++)

Running environment and results

LLVM-clang++ + external openMP library on macOS: (correct)
GCC-g++ + built-in openMP library on macOS: (correct)
GCC-g++ + built-in openMP library on linux: (correct)

So, the loop variable isn’t the decicive factor, std::fstream is!

Conclusion

Do not ever use cpp’s objects unless you make sure it’s safe under a multiThreading context.

Some problems in openMP's parallel for的更多相关文章

  1. Introduction to Parallel Computing

    Copied From:https://computing.llnl.gov/tutorials/parallel_comp/ Author: Blaise Barney, Lawrence Live ...

  2. openmp 的使用

    http://blog.csdn.net/gengshenghong/article/details/7003110 说明:这部分内容比较基础,主要是分析几个容易混淆的OpenMP函数,加以理解. ( ...

  3. 并行计算之OpenMP入门简介

    在上一篇文章中介绍了并行计算的基础概念,也顺便介绍了OpenMP. OpenMp提供了对于并行描述的高层抽象,降低了并行编程的难度和复杂度,这样程序员可以把更多的精力投入到并行算法本身,而非其具体实现 ...

  4. OpenMP并行程序设计

    1.fork/join并行执行模式的概念 2.OpenMP指令和库函数介绍 3.parallel 指令的用法 4.for指令的使用方法 5 sections和section指令的用法 1.fork/j ...

  5. 通过 GCC 学习 OpenMP 框架

     OpenMP 框架是使用 C.C++ 和 Fortran 进行并发编程的一种强大方法.GNU Compiler Collection (GCC) V4.4.7 支持 OpenMP 3.0 标准,而 ...

  6. [转]OpenMP中几个容易混淆的函数(线程数量/线程ID/线程最大数)以及并行区域线程数量的确定

    说明:这部分内容比较基础,主要是分析几个容易混淆的OpenMP函数,加以理解. (1)并行区域数量的确定: 在这里,先回顾一下OpenMP的parallel并行区域线程数量的确定,对于一个并行区域,有 ...

  7. [转载]John Burkardt搜集的FORTRAN源代码

    Over the years, I have collected, modified, adapted, adopted or created a number of software package ...

  8. 竞态条件 race condition data race

    竞态条件 race condition Race condition - Wikipedia https://en.wikipedia.org/wiki/Race_condition A race c ...

  9. Fortran并行计算的一些例子

    以下例子来自https://computing.llnl.gov/tutorials/openMP/exercise.html网站 一.打印线程(Hello world) C************* ...

随机推荐

  1. linux目录的含义

    /bin (binary)存放linux系统必备执行的命令. /boot存放linux的启动文件和内核 /cdrom存放光驱文件系统的目录,刚安装系统时此文件夹是空的. /dev device存放li ...

  2. zabbix_server.conf配置文件参数

    NodeID: 在amster-child 的分布式架构中,这个ID是唯一标识zabbix node的号码 ListenPort:Trapper 类型Item监听的端口, SourceIP: 在连接其 ...

  3. MySQL中concat()、concat_ws()、group_concat()函数的使用技巧与心得总结

    Author:极客小俊 一个专注于web技术的80后 我不用拼过聪明人,我只需要拼过那些懒人 我就一定会超越大部分人! CSDN@极客小俊,原创文章, B站技术分享 B站视频 : Bilibili.c ...

  4. Java反应式框架Reactor中的Mono和Flux

    1. 前言 最近写关于响应式编程的东西有点多,很多同学反映对Flux和Mono这两个Reactor中的概念有点懵逼.但是目前Java响应式编程中我们对这两个对象的接触又最多,诸如Spring WebF ...

  5. 适用于 deno 的多版本管理工具 dvm 发布

    不知不觉中,deno 已经默默的发布了 3 个版本了: 0.1.0 0.1.1 0.1.2 昨晚通宵做了一个 deno 多版本的管理工具: dvm. github 地址: https://github ...

  6. spring-cloud-starter-openfeign 源码详细讲解

    1.测试环境搭建: 1.1 架构图: product服务提供一个接口: order服务通过feign的方式来调用product的接口: order服务需要引入依赖: <dependency> ...

  7. python 系统设置

    1. 设置python运行环境为utf-8 import sys #引用sys模块 reload(sys) #重新加载sys sys.setdefaultencoding("utf-8&qu ...

  8. 联赛模拟测试8 Dash Speed 线段树分治

    题目描述 分析 对于测试点\(1\).\(2\),直接搜索即可 对于测试点\(3 \sim 6\),树退化成一条链,我们可以将其看成序列上的染色问题,用线段树维护颜色相同的最长序列 对于测试点\(7\ ...

  9. VS2015如何调试自己写的DLL与调试

    转载: 1. https://blog.csdn.net/u014738665/article/details/79779632 2. https://blog.csdn.net/jacke121/a ...

  10. Jmeter之『JSR223脚本』

    Json处理(通过JS) 对于Json字符串,需要使用单引号『''』(因为Json中已存在双引号) // String转为Object var jsonObj = JSON.parse('${data ...