[bzoj1227] [SDOI2009]虔诚的墓主人
终于填上了这个万年巨坑....从初二的时候就听说过这题...然后一直不敢写QAQ
现在感觉也不是很烦(然而我还是写麻烦了
离散化一波,预处理出组合数什么的。。
要维护对于当前行,每列上方和下方节点凑出合法方案的个数。
然后对于当前行上两棵相邻的常青树,求一下左边、右边合法方案数,乘上中间空的列的合法方案总数就好了。
单点修改,区间查询。。我竟然跑去写线段树...懒得改了。。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ui unsigned int
using namespace std;
const int maxn=,mxnode=maxn<<;
struct zs{int v,id;}X[maxn],Y[maxn];
struct poi{int x,y;}a[maxn];
int lc[mxnode],rc[mxnode],num1[mxnode],num2[mxnode],tot;
int mp[maxn],st[maxn],top;
ui sm[mxnode],ans,SM,c[maxn][];
int i,j,k,n,m,kk,L,R,P; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra*fh;
}
void build(int a,int b){
int x=++tot;
if(a==b){num2[x]=mp[a];return;}
int mid=a+b>>;
lc[x]=tot+,build(a,mid),rc[x]=tot+,build(mid+,b);
}
void change(int x,int a,int b){
if(a==b){
num1[x]++,num2[x]--,sm[x]=c[num1[x]][kk]*c[num2[x]][kk];
return;
}
int mid=a+b>>;
if(P<=mid)change(lc[x],a,mid);else change(rc[x],mid+,b);
sm[x]=sm[lc[x]]+sm[rc[x]];
}
void query(int x,int a,int b){
if(L<=a&&R>=b){
SM+=sm[x];return;
}
int mid=a+b>>;
if(L<=mid)query(lc[x],a,mid);
if(R>mid)query(rc[x],mid+,b);
} bool cmp(zs a,zs b){return a.v<b.v;}
bool cmpa(poi a,poi b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
int main(){
n=read(),m=read();
n=read();
for(i=;i<=n;i++)X[i].v=read(),Y[i].v=read(),X[i].id=Y[i].id=i;
kk=read();
for(i=;i<=n;i++)c[i][]=;
for(i=;i<=n;i++)for(j=;j<=kk;j++)c[i][j]=c[i-][j]+c[i-][j-];
// for(i=1;i<=n;i++)printf("C(%d %d) %u\n",i,kk,c[i][kk]);return 233; sort(X+,X++n,cmp),sort(Y+,Y++n,cmp);int cntx=,cnty=;
for(i=;i<=n;a[X[i].id].x=cntx,i++)
if(X[i].v!=X[i-].v||i==)cntx++;
for(i=;i<=n;a[Y[i].id].y=cnty,mp[cnty]++,i++)
if(Y[i].v!=Y[i-].v||i==)cnty++;
sort(a+,a++n,cmpa);
build(,cnty); for(i=;i<=n;){
int r=i-,top=;
while(r<n&&a[r+].x==a[i].x)r++,st[++top]=P=a[r].y,change(,,cnty);//,printf(" %d",P);puts("");
if(top>=(kk<<))
for(j=kk;j<=top-kk;j++)if(st[j]+<st[j+])
SM=,L=st[j]+,R=st[j+]-,query(,,cnty),
ans+=SM*c[j][kk]*c[top-j][kk];
i=r+;
}
printf("%d\n",ans<<>>);
}
[bzoj1227] [SDOI2009]虔诚的墓主人的更多相关文章
- BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*
BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...
- bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 803 Solved: 372[Submit][Statu ...
- [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1433 Solved: 672[Submit][Stat ...
- BZOJ1227 [SDOI2009]虔诚的墓主人 【树状数组】
题目 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地.为 ...
- bzoj1227: [SDOI2009]虔诚的墓主人(树状数组,组合数)
传送门 首先,对于每一块墓地,如果上下左右各有$a,b,c,d$棵树,那么总的虔诚度就是$C_k^a*C_k^b*C_k^c*C_k^d$ 那么我们先把所有的点都给离散,然后按$x$为第一关键字,$y ...
- 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)
[BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...
- bzoj1227 P2154 [SDOI2009]虔诚的墓主人
P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...
- BZOJ 1227: [SDOI2009]虔诚的墓主人
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1078 Solved: 510[Submit][Stat ...
- Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 895 Solved: 422[Submit][Statu ...
随机推荐
- 首次在C#程序中用log4net
众所周知log4net是一个很强大的日志管理库,我自己也用了下,这里作下记录: 首先新建一个项目Log4NetTest,然后将log4net.dll程序集添加引用至Log4NetTest. 然后在Lo ...
- Hosts文件实际应用 配置内部服务器提高访问效率和速度
一 hosts文件的作用和介绍 https://jingyan.baidu.com/article/335530da45485e19cb41c3d6.html https://www.cnblogs. ...
- Python 项目实践二(下载数据)第三篇
接着上节继续学习,在本章中,你将从网上下载数据,并对这些数据进行可视化.网上的数据多得难以置信,且大多未经过仔细检查.如果能够对这些数据进行分析,你就能发现别人没有发现的规律和关联.我们将访问并可视化 ...
- Git安装和使用(谨记)
刚开始用git的小白适用,,转自http://www.cnblogs.com/qijunjun/p/7137207.html 实际项目开发中,我们经常会用一些版本控制器来托管自己的代码,今天就来总结下 ...
- PHP随机函数【上】
随机函数应用的场景很多,比如验证码,token,订单号等.由浅入深了解常用随机函数 1.rand 常用的随机数字函数,默认生成[0,getrandmax()]之间的随机数(包括边界值),因性能问题已被 ...
- touchstart和touchend事件
touchstart和touchend事件 移动互联网是未来的发展趋势,现在国内很多互联网大佬都在争取移动这一块大饼,如微信及支付宝是目前比较成功的例子,当然还有各种APP和web运用. 由于公司的需 ...
- php程序员面试经验
面试是你进入公司的第一个关卡,面试过后还会有试用期.可有时候总有那么一些人对待面试完全没人任何防备. 如果你想进入一家优秀的企业,那么对于面试你一定要做好十足的准备.为什么说了:"将军不打没 ...
- Golang 网络爬虫框架gocolly/colly 四
Golang 网络爬虫框架gocolly/colly 四 爬虫靠演技,表演得越像浏览器,抓取数据越容易,这是我多年爬虫经验的感悟.回顾下个人的爬虫经历,共分三个阶段:第一阶段,09年左右开始接触爬虫, ...
- sourcetree跳过注册的方法
当前只有Win的版本,Mac自行百度(笑) 很多人用git命令行不熟练,那么可以尝试使用sourcetree进行操作. 然鹅~~sourcetree又一个比较严肃的问题就是,很多人不会跳过注册或者操作 ...
- CentOS下 elasticsearch集群安装
1.进入root目录并下载elasticsearch cd /root wget https://download.elastic.co/elasticsearch/elasticsearch/ela ...