Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ∑ri=l⌊ai/bi⌋
 
Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.
 
Output
Output the answer for each 'query', each one line.
 
Sample Input
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5

Sample Output
1
1
2
4
4
6

题意

初始a数组为0,给你一个全排列的b数组,q次询问add x y为a数组区间x y增加1,query x y查询a数组整除b数组对应下标的和

题解

区间操作很容易想到线段树

初始每个叶子节点赋值为b[i],维护一个区间最小值min,和区间和sum

对于每个add,区间[X,Y]最小值减1,如果当前区间最小值=1,就继续往下更新,如果更新到叶子节点并且min=1,sum+1

对于每个query,查询区间[X,Y]sum,如果区间min=0,再去暴力更新区间(可以知道一共q次询问,q/1+q/2+q/3+....q/n为调和级数,复杂度O(logn))

总复杂度O(nlog^2 n)

代码

 #include<bits/stdc++.h>
using namespace std; const int N=1e5+; int a[N<<],lazy[N<<],b[N],sum[N<<];
int n;
void PushUp(int rt)
{
a[rt]=min(a[rt<<],a[rt<<|]);
sum[rt]=sum[rt<<]+sum[rt<<|];
}
void PushDown(int rt)
{
if(lazy[rt]==)return;
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
a[rt<<]-=lazy[rt];
a[rt<<|]-=lazy[rt];
lazy[rt]=;
}
void Build(int l,int r,int rt)
{
lazy[rt]=;sum[rt]=;
if(l==r)
{
a[rt]=b[l];
return;
}
int mid=(l+r)>>;
Build(l,mid,rt<<);
Build(mid+,r,rt<<|);
PushUp(rt);
}
void Update(int L,int R,int l,int r,int rt)
{
if(a[rt]>&&L<=l&&r<=R)
{
lazy[rt]++;
a[rt]--;
return;
}
if(a[rt]==&&l==r)
{
sum[rt]++;
lazy[rt]=;
a[rt]=b[l];
return;
}
int mid=(l+r)>>;
PushDown(rt);
if(L<=mid)Update(L,R,l,mid,rt<<);
if(R>mid)Update(L,R,mid+,r,rt<<|);
PushUp(rt);
}
int Query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)return sum[rt];
if(a[rt]==)Update(L,R,,n,);
int mid=(l+r)>>,ans=;
PushDown(rt);
if(L<=mid)ans+=Query(L,R,l,mid,rt<<);
if(R>mid)ans+=Query(L,R,mid+,r,rt<<|);
PushUp(rt);
return ans;
}
int main()
{
int q,x,y;
char op[];
while(scanf("%d%d",&n,&q)!=EOF)
{
for(int i=;i<=n;i++)
scanf("%d",&b[i]);
Build(,n,);
for(int i=;i<q;i++)
{
scanf("%s%d%d",op,&x,&y);
if(op[]=='a')
Update(x,y,,n,);
else
printf("%d\n",Query(x,y,,n,));
}
}
return ;
}

HDU 6315 Naive Operations(线段树区间整除区间)的更多相关文章

  1. 杭电多校第二场 hdu 6315 Naive Operations 线段树变形

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  2. HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树

    hdu 6315 题意:对于一个数列a,初始为0,每个a[ i ]对应一个b[i],只有在这个数字上加了b[i]次后,a[i]才会+1. 有q次操作,一种是个区间加1,一种是查询a的区间和. 思路:线 ...

  3. HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2

    题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...

  4. HDU 6315 Naive Operations(线段树+复杂度均摊)

    发现每次区间加只能加1,最多全局加\(n\)次,这样的话,最后的答案是调和级数为\(nlogn\),我们每当答案加1的时候就单点加,最多加\(nlogn\)次,复杂度可以得当保证. 然后问题就是怎么判 ...

  5. HDU 6315.Naive Operations-线段树(两棵树合并)(区间单点更新、区间最值、区间求和)+思维 (2018 Multi-University Training Contest 2 1007)

    6315.Naive Operations 题意很好理解,但是因为区间求和求的是向下取整的a[i]/b[i],所以直接分数更新区间是不对的,所以反过来直接当a[i]==b[i]的时候,线段树对应的位置 ...

  6. hdu 6315 Naive Operations (2018 Multi-University Training Contest 2 1007)

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  7. HDU 3577Fast Arrangement(线段树模板之区间增减更新 区间求和查询)

    Fast Arrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  8. HDU - 6315(2018 Multi-University Training Contest 2) Naive Operations (线段树区间操作)

    http://acm.hdu.edu.cn/showproblem.php?pid=6315 题意 a数组初始全为0,b数组为1-n的一个排列.q次操作,一种操作add给a[l...r]加1,另一种操 ...

  9. HDU 6315 Naive Operations(线段树+区间维护)多校题解

    题意:a数组初始全为0,b数组题目给你,有两种操作: 思路:dls的思路很妙啊,我们可以将a初始化为b,加一操作改为减一,然后我们维护一个最小值,一旦最小值为0,说明至少有一个ai > bi,那 ...

随机推荐

  1. curl发送xml , xml和数组互转

    public function postXml($url, array $data) { // pack xml $xml = $this->arrayToXml($data); // curl ...

  2. Event 对象的属性和方法

    事件触发时,会将一个 Event 对象传递给事件处理程序,比如: document.getElementById("testText").addEventListener(&quo ...

  3. elasticsearch-java

    elastissearch的JAVA客户端 官网  java api文档  https://www.elastic.co/guide/en/elasticsearch/client/java-api/ ...

  4. flash推流工具<转>

    https://github.com/young-cowboy/young-cowboy.github.io https://www.cnblogs.com/xiaoniuzai/p/7129036. ...

  5. 更改html代码后网页不更新

    写了一个非常简单的 html 页面,只有简单的跳转功能,但是在 Eclipse 下更改代码后用 chrome 浏览器打开时还是显示原来的网页.开始我以为是网页有错误或者有不规范的地方,因为我编写的是 ...

  6. js 正则函数初级之二

    1. 小括号在正则中: 1.1 小括号:表示分组 1.2 分组之后,,每个组都有一个序号,从左到右,依次为1,2,3.......:可以使用 RegExp.$1,RegExp.$2,RegExp.$3 ...

  7. Shell函数使用方法

    Shell函数是一组命令集或语句组成一个可用块.利用函数可以简化脚本编写.函数要求先定义再使用,调用函数时直接使用函数名即可.这里主要介绍shell编程中函数定义.调用.获取函数参数以及获取函数返回值 ...

  8. Oracle分区表常见操作

    Oracle分区表常用于业务中大表使用,如历史交易记录表等,提高表记录查询效率.本文主要描述范围分区表的创建.新增以及索引创建. Oracle操作分区表相关信息 显示数据库所有分区表的信息:DBA_P ...

  9. Oracle数据文件迁移到裸设备

    本文主要描述如何将Oracle表空间的文件系统形式的数据文件迁移到LV裸设备上. 前提条件 1.oracle运行正常. 2.已使用LVM命令规划好LV文件.如/dev/vgoracle/lvdatat ...

  10. [ SHELL编程 ] echo和printf使用实例

    本文主要描述Linux系统中echo和printf命令的使用方法,包括命令参数的含义.使用技巧. 1.echo    了解一个命令我们首先要知道它能做什么,它有哪些参数,参数的含义,可以实现我们哪方面 ...