Firing

Time Limit: 5000MS Memory Limit: 131072K

Total Submissions: 11558 Accepted: 3494

Description

You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decision to have signed them?”, yet calm enough to consider the potential profit and loss from firing a good portion of them. While getting rid of an employee will save your wage and bonus expenditure on him, termination of a contract before expiration costs you funds for compensation. If you fire an employee, you also fire all his underlings and the underlings of his underlings and those underlings’ underlings’ underlings… An employee may serve in several departments and his (direct or indirect) underlings in one department may be his boss in another department. Is your firing plan ready now?

Input

The input starts with two integers n (0 < n ≤ 5000) and m (0 ≤ m ≤ 60000) on the same line. Next follows n + m lines. The first n lines of these give the net profit/loss from firing the i-th employee individually bi (|bi| ≤ 107, 1 ≤ i ≤ n). The remaining m lines each contain two integers i and j (1 ≤ i, j ≤ n) meaning the i-th employee has the j-th employee as his direct underling.

Output

Output two integers separated by a single space: the minimum number of employees to fire to achieve the maximum profit, and the maximum profit.

Sample Input

5 5

8

-9

-20

12

-10

1 2

2 5

1 4

3 4

4 5

Sample Output

2 2

Hint

As of the situation described by the sample input, firing employees 4 and 5 will produce a net profit of 2, which is maximum.

Source

POJ Monthly–2006.08.27, frkstyc

首先我们要知道,这题要考察的是最大权闭合子图的姿势,不懂的OIEROIEROIER可以先看看这位大佬的博客

学习完了最大权闭合子图的知识过后,这道题做起来应该是比较轻松的了,我们可以参照求最大权闭合子图的方法,建立源点sss和汇点ttt,根据点权的正负性分别跟源点和汇点连边,在求出最小割之后dfsdfsdfs一遍sss所在的集合就可以得出最大权闭合子图了。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define inf 0x3f3f3f3f
#define N 60000
#define M 3000000
using namespace std;
inline long long read(){
	long long ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){
		if(ch=='-')w=-1;
		ch=getchar();
	}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+ch-'0',ch=getchar();
	return ans*w;
}
struct Node{long long v,next,c;}e[M<<1];
long long d[N],first[N],n,m,s,t,cnt=-1,ans=0,tot=0;
bool vis[N];
inline void add(long long u,long long v,long long c){
	e[++cnt].v=v;
	e[cnt].next=first[u];
	e[cnt].c=c;
	first[u]=cnt;
	e[++cnt].v=u;
	e[cnt].next=first[v];
	e[cnt].c=0;
	first[v]=cnt;
}
inline bool bfs(){
	queue<long long>q;
	q.push(s);
	memset(d,-1,sizeof(d));
	d[s]=0;
	while(!q.empty()){
		long long x=q.front();
		q.pop();
		for(long long i=first[x];i!=-1;i=e[i].next){
			long long v=e[i].v;
			if(d[v]!=-1||e[i].c<=0)continue;
			d[v]=d[x]+1;
			if(v==t)return true;
			q.push(v);
		}
	}
	return false;
}
inline long long dfs(long long x,long long f){
	if(x==t||!f)return f;
	long long flow=f;
	for(long long i=first[x];i!=-1;i=e[i].next){
		long long v=e[i].v;
		if(d[v]==d[x]+1&&flow&&e[i].c>0){
			long long tmp=dfs(v,min(e[i].c,flow));
			if(!tmp)d[v]=-1;
			flow-=tmp;
			e[i].c-=tmp;
			e[i^1].c+=tmp;
		}
	}
	return f-flow;
}
inline void dfs1(long long p){
	vis[p]=true;
	++tot;
	for(long long i=first[p];i!=-1;i=e[i].next){
		long long v=e[i].v;
		if(e[i].c>0&&!vis[v])dfs1(v);
	}
}
int main(){
	memset(first,-1,sizeof(first));
	memset(vis,false,sizeof(vis));
	n=read(),m=read(),s=0,t=n+1;
	for(long long i=1;i<=n;++i){
		long long x=read();
		if(x>0){
			add(s,i,x);
			ans+=x;
		}
		else add(i,t,-x);
	}
	for(long long i=1;i<=m;++i){
		long long u=read(),v=read();
		add(u,v,inf);
	}
	while(bfs())ans-=dfs(s,inf);
	dfs1(s);
	printf("%lld %lld",tot-1,ans);
	return 0;
}

2018.06.27Firing(最大权闭合子图)的更多相关文章

  1. 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)

    传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<j​pi,j​​ ...

  2. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  3. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  4. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  5. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  6. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

  7. HDU5772 String problem(最大权闭合子图)

    题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个 ...

  8. SCU3109 Space flight(最大权闭合子图)

    嗯,裸的最大权闭合子图. #include<cstdio> #include<cstring> #include<queue> #include<algori ...

  9. hiho 第119周 最大权闭合子图

    描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...

随机推荐

  1. 测试用户体验相关——UI设计准则及方法

    之前跟我们uxc同学聊过一些,记录下来,方便在工作中不断渗透深入和理解,能够逐渐养成比较好的审美和对UI交互问题的敏锐的觉察力. 以问题为导向来吧... 第一个问题:一个menu中的图标一定要风格一致 ...

  2. Django具体操作(四)

    自定义模板语法的标签 首先在django的项目中创建app并且在settings中添加了APP的名称. 在app添加templatetags模块(名字是固定的,也就是说,必须要这样) 如图如何自定义呢 ...

  3. Shell脚本break和continue命令

    在循环过程中,有时候需要在未达到循环结束条件时强制跳出循环,Shell使用 break 和 continue 来跳出循环. break命令 允许跳出所有循环(终止执行后面的所有循环). continu ...

  4. 一分钟了解mongodb(转)

    mongo的由来 截取自英文俚语humongous,意为”巨大的”,是否表明mongodb在设计之初就是为大数据量处理而生呢? mongodb是个啥 mongodb是个可扩展.高性能.开源.面向文档( ...

  5. RecyclerView的点击事件添加-------接口回调的形式添加

    package com.example.recyclerviewdemo; import android.support.v7.widget.RecyclerView; import android. ...

  6. Oracle_SQL(5) 连接和子查询

    一.连接join一般分类: inner join: 内连接,又叫等值连接,只返回两个表中连接字段相等的行. left join :左连接,返回左表中所有的记录以及右表中连接字段相等的记录. right ...

  7. 引爆你的Javascript代码进化

    转自:http://www.hicss.net/evolve-your-javascript-code/ 方才在程序里看到一段JS代码,写法极为高明,私心想着若是其按照规范来写,定可培养对这门语言的理 ...

  8. Delphi--最强大的开发工具(欢迎转载)

    最强大的开发工具 Delphi 目录 --------------------------------------------------------------------------- 前言 De ...

  9. 一个漂亮的lazarus做的pagecontrol

    厌倦了屏幕上的默认灰色?让我们来欣赏一下商业配色. 这个组件实现了高光,点睛色,描边边等效果, 再配几组色彩,应该非常不错. 基于 lazarus 1.08 大家可以上 www.fpccn.com 看 ...

  10. c中extern的作用

    参考资料: http://www.cnblogs.com/yc_sunniwell/archive/2010/07/14/1777431.html