假设我们要求解以下的最小化问题: $min_xf(x)$

如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解:

$x_{k+1} = x_k - a\Delta f(x_k)$

如果$\Delta f(x)$满足L-Lipschitz,即:

那么我们可以在点$x_k$附近把$f(x)$近似为:

把上面式子中各项重新排列下,可以得到:

这里$\varphi (x_k)$不依赖于x,因此可以忽略。

显然,$\hat f(x, x_k)$的最小值在

获得。所以,从这个角度看的话,GD的每次迭代是在最小化原目标函数的一个二次近似函数.(梯度下降的由来的推导,这里说的不好,参考这里: http://www.cnblogs.com/ljygoodgoodstudydaydayup/p/7274943.html)

在很多最小化问题中,我们往往会加入非光滑的惩罚项$g(x)$, 比如常见的L1惩罚: $g(x) = ||x||_1$ .这个时候,GD就不好直接推广了。但上面的二次近似思想却可以推广到这种情况:

这就是所谓的Proximal Gradient Descent (PGD)算法,即目标函数由损失项和正则项组成。对于上式,可先计算$z = x_k - \frac{1}{L}\Delta f(x_k)$, 然后求解


软阈值(SoftThresholding)可以求解如下优化问题:

其中:

根据范数的定义,可以将上面优化问题的目标函数拆开:

也就是说,我们可以通过求解N个独立的形如函数

的优化问题,来求解这个问题。由中学时代学过的求极值方法知道,可以求函数f(x)导数:

令函数f(x)导数等于0,得:

这个结果等号两端都有变量x,需要再化简一下。下面分三种情况讨论:

(1)当b>λ/2时

假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;(λ > 0)

假设x>0,则sgn(x)=1,所以x=b-λ/2>0,成立;

所以此时在x=b-λ/2>0处取得极小值:

即此时极小值小于f(0),而当x<0时

即当x<0时函数f(x)为单调降函数(对任意△x<0,f(0)<f(△x))。因此,函数在x=b-λ/2>0处取得最小值。

(2)当b<-λ/2时

假设x<0,则sgn(x)=-1,所以x=b+λ/2<0,成立;

假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x>0矛盾;

所以此时在x=b+λ/2<0处取得极小值:

即此时极小值小于f(0),而当x>0时

即当x>0时函数f(x)为单调升函数(对任意△x>0,f(△x)>f(0))。因此,函数在x=b+λ/2<0处取得最小值。

(3)当-λ/2<b<λ/2时(即|b|<λ/2时)

假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;

假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x<0矛盾;

即无论x为大于0还是小于0均没有极值点,那么x=0是否为函数f(x)的极值点呢?

对于△x≠0,

当△x >0时,利用条件b<λ/2可得

当△x <0时,利用条件b<λ/2可得(注:此时|△x |=-△x)

因此,函数在x=0处取得极小值,也是最小值。

综合以上三种情况,f(x)的最小值在以下位置取得:

至此,我们可以得到优化问题

的解为

http://blog.csdn.net/bingecuilab/article/details/50628634

http://blog.csdn.net/jbb0523/article/details/52103257

Proximal Gradient Descent for L1 Regularization(近端梯度下降求解L1正则化问题)的更多相关文章

  1. 机器学习算法整理(二)梯度下降求解逻辑回归 python实现

    逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...

  2. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  3. 近端梯度算法(Proximal Gradient Descent)

    L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x ...

  4. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  5. [Python]数据挖掘(1)、梯度下降求解逻辑回归——考核成绩分类

    ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模 ...

  6. 关于subGradent descent和Proximal gradient descent的迭代速度

    clc;clear; D=1000;N=10000;thre=10e-8;zeroRatio=0.6; X = randn(N,D); r=rand(1,D); r=sign(1-2*r).*(2+2 ...

  7. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  8. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  9. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

      梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...

随机推荐

  1. Java中IO流讲解(一)

    一.概念 IO流用来处理设备之间的数据传输 Java对数据的操作是通过流的方式 Java用于操作流的类都在IO包中 流按流向分为两种:输入流,输出流 流按操作类型分为两种: 字节流 : 字节流可以操作 ...

  2. 使用Lucene的java api 写入和读取索引库

    import org.apache.commons.io.FileUtils;import org.apache.lucene.analysis.standard.StandardAnalyzer;i ...

  3. Python中字典的key都可以是什么

    作者:Inotime 来源:CSDN 原文:https://blog.csdn.net/lnotime/article/details/81192207 答:一个对象能不能作为字典的key,就取决于其 ...

  4. python 跨域

    CORS跨域请求 CORS即Cross Origin Resource Sharing 跨域资源共享, 那么跨域请求还分为两种,一种叫简单请求,一种是复杂请求~~ 简单请求 HTTP方法是下列方法之一 ...

  5. JavaScript括号中什么什么不加引号什么时候加引号?

    *****我的QQ号:1539832180.欢迎一起讨论学习.***** 1.如果是你定义的变量,不能加引号. 因为在大多数语言里面,单引号(或双引号)里面的内容表示的都是字符串. 2.如果是你定义的 ...

  6. 大数据学习——sqoop导入数据

    把数据从关系型数据库导入到hadoop 启动sqoop 导入表表数据到HDFS 下面的命令用于从MySQL数据库服务器中的emp表导入HDFS. sqoop import \ --connect jd ...

  7. WPF之DataAnnotations 注解说明

    参考:https://www.cnblogs.com/yaosuc/p/4527886.html 1.基础验证: using System.ComponentModel.DataAnnotations ...

  8. Codeforces Round #401 (Div. 2) 离翻身就差2分钟

    Codeforces Round #401 (Div. 2) 很happy,现场榜很happy,完全将昨晚的不悦忘了.终判我校一片惨白,小董同学怒怼D\E,离AK就差一个C了,于是我AC了C题还剩35 ...

  9. 【Go】错误处理

    · error类型是一个接口类型,也是一个Go语言的内建类型.在这个接口类型的声明中只包含了一个方法Error.这个方法不接受任何参数,但是会返回一个string类型的结果.它的作用是返回错误信息的字 ...

  10. 【Luogu】P3052摩天大楼里的奶牛(状压DP)

    参见ZHT467的题解. f[i]表示在i这个集合下的最少分组数和当前组最少的容量. 从1到(1<<n)-1枚举i,对于每个i枚举它的子奶牛,然后重载运算符计算. 代码如下 #includ ...