假设我们要求解以下的最小化问题: $min_xf(x)$

如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解:

$x_{k+1} = x_k - a\Delta f(x_k)$

如果$\Delta f(x)$满足L-Lipschitz,即:

那么我们可以在点$x_k$附近把$f(x)$近似为:

把上面式子中各项重新排列下,可以得到:

这里$\varphi (x_k)$不依赖于x,因此可以忽略。

显然,$\hat f(x, x_k)$的最小值在

获得。所以,从这个角度看的话,GD的每次迭代是在最小化原目标函数的一个二次近似函数.(梯度下降的由来的推导,这里说的不好,参考这里: http://www.cnblogs.com/ljygoodgoodstudydaydayup/p/7274943.html)

在很多最小化问题中,我们往往会加入非光滑的惩罚项$g(x)$, 比如常见的L1惩罚: $g(x) = ||x||_1$ .这个时候,GD就不好直接推广了。但上面的二次近似思想却可以推广到这种情况:

这就是所谓的Proximal Gradient Descent (PGD)算法,即目标函数由损失项和正则项组成。对于上式,可先计算$z = x_k - \frac{1}{L}\Delta f(x_k)$, 然后求解


软阈值(SoftThresholding)可以求解如下优化问题:

其中:

根据范数的定义,可以将上面优化问题的目标函数拆开:

也就是说,我们可以通过求解N个独立的形如函数

的优化问题,来求解这个问题。由中学时代学过的求极值方法知道,可以求函数f(x)导数:

令函数f(x)导数等于0,得:

这个结果等号两端都有变量x,需要再化简一下。下面分三种情况讨论:

(1)当b>λ/2时

假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;(λ > 0)

假设x>0,则sgn(x)=1,所以x=b-λ/2>0,成立;

所以此时在x=b-λ/2>0处取得极小值:

即此时极小值小于f(0),而当x<0时

即当x<0时函数f(x)为单调降函数(对任意△x<0,f(0)<f(△x))。因此,函数在x=b-λ/2>0处取得最小值。

(2)当b<-λ/2时

假设x<0,则sgn(x)=-1,所以x=b+λ/2<0,成立;

假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x>0矛盾;

所以此时在x=b+λ/2<0处取得极小值:

即此时极小值小于f(0),而当x>0时

即当x>0时函数f(x)为单调升函数(对任意△x>0,f(△x)>f(0))。因此,函数在x=b+λ/2<0处取得最小值。

(3)当-λ/2<b<λ/2时(即|b|<λ/2时)

假设x<0,则sgn(x)=-1,所以x=b+λ/2>0,与假设x<0矛盾;

假设x>0,则sgn(x)=1,所以x=b-λ/2<0,与假设x<0矛盾;

即无论x为大于0还是小于0均没有极值点,那么x=0是否为函数f(x)的极值点呢?

对于△x≠0,

当△x >0时,利用条件b<λ/2可得

当△x <0时,利用条件b<λ/2可得(注:此时|△x |=-△x)

因此,函数在x=0处取得极小值,也是最小值。

综合以上三种情况,f(x)的最小值在以下位置取得:

至此,我们可以得到优化问题

的解为

http://blog.csdn.net/bingecuilab/article/details/50628634

http://blog.csdn.net/jbb0523/article/details/52103257

Proximal Gradient Descent for L1 Regularization(近端梯度下降求解L1正则化问题)的更多相关文章

  1. 机器学习算法整理(二)梯度下降求解逻辑回归 python实现

    逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...

  2. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  3. 近端梯度算法(Proximal Gradient Descent)

    L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x ...

  4. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  5. [Python]数据挖掘(1)、梯度下降求解逻辑回归——考核成绩分类

    ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模 ...

  6. 关于subGradent descent和Proximal gradient descent的迭代速度

    clc;clear; D=1000;N=10000;thre=10e-8;zeroRatio=0.6; X = randn(N,D); r=rand(1,D); r=sign(1-2*r).*(2+2 ...

  7. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  8. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  9. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

      梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...

随机推荐

  1. xadmin下设置“use_bootswatch = True”无效的解决办法

    环境: python 2.7 django 1.9 xadmin采用源代码的方式引入到项目中 问题: 在xadmin使用的过程中,设置“use_bootswatch = True”,企图调出主题菜单, ...

  2. (64)zabbix正则表达式应用

    概述 在前面的<zabbix low-level discovery>一文中有filter一项,用于从结果中筛选出你想要的结果,比如我们在filter中填入^ext|^reiserfs则表 ...

  3. 五:SQL语句中的数据类型

    一:MySQL数据类型 MySQL中定义数据字段的类型对你数据库的优化是非常重要的 MySQL支持多种数据类型,大致可以分为三类:数值 日期/时间和字符串 二.数值类型(12) 2.1.整数类型(6) ...

  4. centos7 parted 扩容

    (系统:vmware上的centos7.4 ,使用工具:parted分区命令.) 最近发现磁盘不够用了,需要加点.## WARNING ! 下面是实验过程,不代表生产环境.若有重要数据请操作前备份. ...

  5. Linux菜鸟起飞之路【四】绝对路径、相对路径及常用目录

    一.绝对路径与相对路径 Linux操作系统中存在着两种路径:绝对路径和相对路径.我们在访问文件或文件夹的时候,其实都是通过路径来操作的.两种路径在实际操作中能起到同等的作用. 在开始具体介绍之前,我们 ...

  6. centos7系统优化

    优化说明: 一.关闭selinux 二.更改为阿里yum源 三.提权dm用户可以使用sudo 四.优化ssh远程登录配置 五.设置中文字符集 六.设置时间同步 七.历史记录数及登录超时环境变量设置 八 ...

  7. 无法解析具体reference那个同名文件

    公司平台,如果src和gen文件系统中有同名文件.reference时会根据depend.cfg文件优先reference遇到的同名文件.这样如果存在同名文件且引用顺序不对就会有莫名的bug. 像rt ...

  8. struct 区别 在C 和C++ 中

    C语言中:   Struct是用户自定义数据类型(UDT).   C++语言中:   Struct是抽象数据类型(ADT),支持成员函数的定义.       在C++中,struct的成员的默认访问说 ...

  9. PAT Basic 1062

    1062 最简分数 一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0.最简分数是指分子和分母没有公约数的分数表示形式. 现给定两个不相等的正分数 N​1​​/M​1​​ 和 N​2​​/M ...

  10. Java POI 操作Excel(读取/写入)

    pom.xml依赖: <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi< ...