传送门

据说是一个叫做随机增量法的东西

枚举\(i\),如果不在圆中将它设为圆心

枚举\(j\),如果不在圆中将\((i,j)\)成为新的圆的直径

枚举\(k\),如果不在圆中让\(i,j,k\)组成的三角形的外接圆成为新的圆

据说在随机数据的情况下期望\(O(n)\),所以要在读进来的时候random_shuffle一下

主要是求三角形外接圆的圆心太恶心了……大概是这样的(图是偷来的)

//minamoto
#include<bits/stdc++.h>
#define rint register int
#define eps 1e-6
using namespace std;
const int N=5e5+5;
struct node{double x,y;}p[N],C;
int n;double R;
inline double dis(const node &a,const node &b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
inline bool in(const node &x){return dis(x,C)-R<eps;}
node get(node A,node B,node C){
node res;
double a1=B.x-A.x,a2=C.x-A.x;
double b1=B.y-A.y,b2=C.y-A.y;
double c1=(a1*a1+b1*b1)/2.0;
double c2=(a2*a2+b2*b2)/2.0;
double d=a1*b2-a2*b1;
res.x=A.x+(c1*b2-c2*b1)/d;
res.y=A.y+(c2*a1-c1*a2)/d;return res;
}
void solve(){
random_shuffle(p+1,p+1+n),C=p[1],R=0;
for(rint i=1;i<=n;++i)if(!in(p[i])){
C=p[i],R=0;for(rint j=1;j<i;++j)if(!in(p[j])){
C.x=(p[i].x+p[j].x)/2,C.y=(p[i].y+p[j].y)/2;
R=dis(p[i],p[j])/2;
for(rint k=1;k<j;++k)if(!in(p[k]))
C=get(p[i],p[j],p[k]),R=dis(C,p[i]);
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
srand(20030719);
scanf("%d",&n);
for(rint i=1;i<=n;++i)scanf("%lf%lf",&p[i].x,&p[i].y);
solve();
printf("%.2lf %.2lf %.2lf\n",C.x,C.y,R);return 0;
}

P2533 [AHOI2012]信号塔的更多相关文章

  1. (bzoj1337 || 洛谷P1742 最小圆覆盖 )|| (bzoj2823 || 洛谷P2533 [AHOI2012]信号塔)

    bzoj1337 洛谷P1742 用随机增量法.讲解:https://blog.csdn.net/jokerwyt/article/details/79221345 设点集A的最小覆盖圆为g(A) 可 ...

  2. bzoj2823[AHOI2012]信号塔

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1190  Solved: 545[Submit][Status ...

  3. 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)

    [BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...

  4. 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...

  5. 【BZOJ】2823: [AHOI2012]信号塔

    题意 给\(n\)个点,求一个能覆盖所有点的面积最小的圆.(\(n \le 50000\)) 分析 随机增量法 题解 理论上\(O(n^3)\)暴力,实际上加上随机化后期望是\(O(n)\)的. 算法 ...

  6. 【bzoj2823】 AHOI2012—信号塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2823 (题目链接) 题意 求最小圆覆盖 Solution 关于最小圆覆盖的做法,论文里面都有.其实真 ...

  7. BZOJ 2823: [AHOI2012]信号塔

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2823 随机增量法.不断加点维护圆,主要是三点共圆那里打得烦(其实也就是个两中垂线求交点+联立方 ...

  8. BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)

    BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...

  9. AHOI2012 信号塔 | 最小圆覆盖模板

    题目链接:戳我 最小圆覆盖. 1.枚举第一个点,考虑当前圆是否包含了这个点,如果没有,则把圆变成以这个点为圆心,半径为0的圆. 2.枚举第二个点,考虑圆是否包含了这个点,如果没有,则把圆变成以这两个点 ...

随机推荐

  1. 如何使用Dilworth定理

    相关例题:NOIP 1999导弹拦截 遇到这题不会去网上搜Dilworth定理,太难受了,看不懂证明 但是,我知道怎么使用了,管那么多,会用就完事了 学习自这篇文章 -1.为什么我不想学证明这个定理 ...

  2. mybatis传参总结

    注:文章引用部分 mybatis传递参数总结文章内容 一.单个参数 1.基本数据类型 (1)直接使用 List<ChargeRuleDO> tests(long id); <sele ...

  3. 洛谷——P3871 [TJOI2010]中位数

    P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...

  4. radial profiles of mean streamwise velocity at X/D=3

    matlab code: load aver_ux_array.dat; load z_array.dat; r=z_array(:,); r=r.' r_j=0.00125; r_nor=r/d; ...

  5. 3.2.2.5 BRE运算符优先级

        在数学表达式里,正则表达式的运算符具有某种已定义的优先级,指的是某个运算符(优先级较高)将比其他运算符先被处理.       BRE运算符优先级,由高至低   运算符 表示含义 [..] [= ...

  6. MongoDB怎么快速的删除数据库数据?

    我的mongodb里有10+数据库.现在需要重置这个环境,得到干净的没有数据的MongoDB.怎么快速安全的删除这些数据库数据呢? 记得首先备份你的数据库mongodump -o bakfolder ...

  7. jQuery对象是怎么创建的

    一.jQuery源码 在jQuery中,$是jQuery的别名,执行“$()”就是执行“jQuery()”,执行“$()”返回的是一个jQuery对象,在源码中,它是这样定义的: ... var jQ ...

  8. 什么是Spring Boot简介

    1.什么是spring boot 简单的说,spring boot就是整合了很多优秀的框架,不用我们自己手动的去写一堆xml配置然后进行配置. 从本质上来说,Spring Boot就是Spring,它 ...

  9. python中实现将普通字典dict转换为java中的treeMap

    上代码: from heapq import heappush,heappop from collections import OrderedDict def toTreeMap(paramMap): ...

  10. 洛谷——P2910 [USACO08OPEN]寻宝之路Clear And Present Danger

    P2910 [USACO08OPEN]寻宝之路Clear And Present Danger 题目描述 Farmer John is on a boat seeking fabled treasur ...