bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错。。。。
。。。
不难发现这个题实际上是一个完全背包
问题在于n太大了,相应的有质数的数量不会超过7个
假设要求sigema(1~plen)i pi*ci=n 的方案数
令xi=ci/(S*pi),yi=ci%(S/pi),注意yi<S/pi
则等价于sigema(1~plen)i S*xi+yi*pi=n
若令sigema(1~plen)i xi=m,则sigema(1~plen)yi*pi=n-m*S
n-m*S=sigema(1~plen)yi*pi<plen*S,可推出n/S-plen<m<=n/S
此时plen有用了,我们可以枚举m,那么对于x的方案用插板法得C(m+plen-1,plen-1),对于y直接背包plen*S,朴素的做法是O(plen*(plen*S)*S/pi)的,随便优化下就可以把S/pi去掉了,不过要稍微注意yi的限制。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxn=**1e6+_;
const LL mod=1e9+; int plen,p[];
bool divi(int n)
{
plen=;
for(int i=;i*i<=n;i++)
if(n%i==)
{
p[]+=i;p[++plen]=i;n/=i;
if(n%i==)return false;
}
if(n!=)p[]+=n,p[++plen]=n;
return true;
} LL inv[];
void yu(){inv[]=;for(int i=;i<=plen;i++)inv[i]=inv[mod%i]*(mod-mod/i)%mod;}
LL C(LL n,LL m)
{
LL ret=;
for(int i=;i<=m;i++)
{
ret=ret*(n%mod)%mod*inv[i]%mod; n--;
}
return ret;
}
LL f[][maxn]; int now;
void DP(int S)
{
int li=S*plen;
now=,f[now][]=;
for(int i=;i<=plen;i++)
{
now^=;
for(int j=;j<li;j++)
{
f[now][j]=;
if(j-p[i]>=)f[now][j]=(f[now][j]+f[now][j-p[i]])%mod;
f[now][j]=(f[now][j]+f[now^][j])%mod;
if(j>=S/p[i]*p[i])f[now][j]=(f[now][j]-f[now^][j-S/p[i]*p[i]]+mod)%mod;
}
}
} int main()
{
freopen("3.in","r",stdin);
freopen("a.out","w",stdout);
int S,Q;
scanf("%d%d",&S,&Q);
if(!divi(S)){while(Q--)puts("");return ;}
yu();DP(S);
while(Q--)
{
LL n;
scanf("%lld",&n);n-=p[];
if(n<){puts("");continue;} LL ans=;
for(LL m=max(0LL,n/S-plen+);m<=n/S;m++)
{
ans=(ans+C(m+plen-,plen-)*f[now][n-m*S])%mod;
}
printf("%lld\n",ans);
} return ;
}
bzoj3462: DZY Loves Math II的更多相关文章
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- DZY Loves Math II
简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
随机推荐
- 洛谷 [P2216] 理想的正方形
二维单调队列 先横向跑一边单调队列,记录下每一行长度为n的区间的最值 在纵向跑一边单调队列,得出结果 注意,mi要初始化为一个足够大的数 #include <iostream> #incl ...
- 标准C程序设计七---22
Linux应用 编程深入 语言编程 标准C程序设计七---经典C11程序设计 以下内容为阅读: <标准C程序设计>(第7版) 作者 ...
- msp430项目编程55
msp430综合项目---扩展项目五55 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结
- svn服务安装与配置
SVN安装 centos系统下执行yum install subversion 创建项目 svnadmin create dxk-test 创建项目dxk-test 服务配置与权限控制 vim con ...
- jsp 时间格式
<%@ taglib prefix='fmt' uri="http://java.sun.com/jsp/jstl/fmt" %> <fmt:formatDate ...
- ubuntu远程桌面设置
一.服务器端电脑设置: 1.在搜索端搜索desktop sharing,然后设置后退出 二.客户端电脑设置: 1.在搜索端搜索remmina remote desktop client 2.如图设置: ...
- Spring实战Day6
3.4 bean的作用域 Spring中bean的作用域 单例(Singleton):在整个应用中,只创建bean的一个实例. 原型(Prototype):每次注入或者通过Spring应用上下文获取的 ...
- 初学Java经典例子
我自己看的书的理解学习Java就是学习对象,就像谈恋爱,你对她多付出,收货就多(跑题了对象是啥??对象就是实体,通过类可以生成具有特定状态(或者叫属性)和行为或动作的实例,问题来了怎么创建? new一 ...
- 【深入Java虚拟机】之六:Java语法糖
语法糖(Syntactic Sugar),也称糖衣语法,是由英国计算机学家Peter.J.Landin发明的一个术语,指在计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使 ...
- Protostuff序列化和反序列化使用说明
原文:http://blog.csdn.net/zhglance/article/details/56017926 google原生的protobuffer使用起来相当麻烦,首先要写.proto文件, ...