bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错。。。。
。。。
不难发现这个题实际上是一个完全背包
问题在于n太大了,相应的有质数的数量不会超过7个
假设要求sigema(1~plen)i pi*ci=n 的方案数
令xi=ci/(S*pi),yi=ci%(S/pi),注意yi<S/pi
则等价于sigema(1~plen)i S*xi+yi*pi=n
若令sigema(1~plen)i xi=m,则sigema(1~plen)yi*pi=n-m*S
n-m*S=sigema(1~plen)yi*pi<plen*S,可推出n/S-plen<m<=n/S
此时plen有用了,我们可以枚举m,那么对于x的方案用插板法得C(m+plen-1,plen-1),对于y直接背包plen*S,朴素的做法是O(plen*(plen*S)*S/pi)的,随便优化下就可以把S/pi去掉了,不过要稍微注意yi的限制。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxn=**1e6+_;
const LL mod=1e9+; int plen,p[];
bool divi(int n)
{
plen=;
for(int i=;i*i<=n;i++)
if(n%i==)
{
p[]+=i;p[++plen]=i;n/=i;
if(n%i==)return false;
}
if(n!=)p[]+=n,p[++plen]=n;
return true;
} LL inv[];
void yu(){inv[]=;for(int i=;i<=plen;i++)inv[i]=inv[mod%i]*(mod-mod/i)%mod;}
LL C(LL n,LL m)
{
LL ret=;
for(int i=;i<=m;i++)
{
ret=ret*(n%mod)%mod*inv[i]%mod; n--;
}
return ret;
}
LL f[][maxn]; int now;
void DP(int S)
{
int li=S*plen;
now=,f[now][]=;
for(int i=;i<=plen;i++)
{
now^=;
for(int j=;j<li;j++)
{
f[now][j]=;
if(j-p[i]>=)f[now][j]=(f[now][j]+f[now][j-p[i]])%mod;
f[now][j]=(f[now][j]+f[now^][j])%mod;
if(j>=S/p[i]*p[i])f[now][j]=(f[now][j]-f[now^][j-S/p[i]*p[i]]+mod)%mod;
}
}
} int main()
{
freopen("3.in","r",stdin);
freopen("a.out","w",stdout);
int S,Q;
scanf("%d%d",&S,&Q);
if(!divi(S)){while(Q--)puts("");return ;}
yu();DP(S);
while(Q--)
{
LL n;
scanf("%lld",&n);n-=p[];
if(n<){puts("");continue;} LL ans=;
for(LL m=max(0LL,n/S-plen+);m<=n/S;m++)
{
ans=(ans+C(m+plen-,plen-)*f[now][n-m*S])%mod;
}
printf("%lld\n",ans);
} return ;
}
bzoj3462: DZY Loves Math II的更多相关文章
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- DZY Loves Math II
简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
随机推荐
- Spring的声明式事务管理<tx:advice/> 有关的设置
<tx:advice/> 有关的设置 这一节里将描述通过 <tx:advice/> 标签来指定不同的事务性设置.默认的 <tx:advice/> 设置如下: 事务传 ...
- mock数据。根据表中一天的数据模拟其他日期的数据
package test; import java.sql.*; import java.text.SimpleDateFormat; import java.util.*; import java. ...
- 简单题(bzoj 1683)
Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x,y<=N,A是正整数 将格 ...
- springboot收集
Spring Boot实战:拦截器与过滤器 参考:https://blog.csdn.net/m0_37106742/article/details/64438892 https://www.ibm. ...
- jsp 时间格式
<%@ taglib prefix='fmt' uri="http://java.sun.com/jsp/jstl/fmt" %> <fmt:formatDate ...
- 2017-10-29-morning-清北模拟赛
T1 遭遇 #include <algorithm> #include <cstdio> #include <cmath> inline void read(int ...
- 洛谷—— P2515 [HAOI2010]软件安装
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- noip 2013 luogu P1969 积木大赛
题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi. 在搭建开始之前,没有任何积木(可以看成 ...
- jquery 获取浏览器窗口的可视区域高度 宽度 滚动条高
原文:http://www.open-open.com/code/view/1421827925437 alert($(window).height()); //可视区域高度 alert($(docu ...
- android 圆形按钮
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools=&q ...