bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差
以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对值 的和。
转移显然是
\]
这样看起来是\( O(n^3) \)的,但是注意到s[i][j]固定
\]
这样就可以在处理i-1的时候求出mn[i-1][k]为前k个中最小的f[i-1][k]-s[i][k],所以时间复杂度变成了\( O(n^2) \),空间是可以用滚动数组压到\( O(n) \)的,但是方便起见(懒)就只写了\( O(n^2) \)的
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=2005,inf=(1<<30)-1+(1<<30);
int n,a[N],b[N],f[N][N],s[N][N],mn[N][N],ans=inf;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=b[i]=read();
sort(b+1,b+1+n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
s[i][j]=s[i][j-1]+abs(a[j]-b[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j]=mn[i-1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i+1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
for(int i=n;i>=1;i--)
for(int j=1;j<=n;j++)
f[i][j]=mn[i+1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i-1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
printf("%d\n",ans);
return 0;
}
bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】的更多相关文章
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...
- 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整
[算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
随机推荐
- 易维信(EVTrust)支招五大技巧识别钓鱼网站
网上购物和网上银行凭借其便捷性和通达性,在互联网上日渐流行.在互联网上,你可以随时进行转账汇款或进行交易.据艾瑞咨询发布<2008-2009年中国网上支付行业发展报告>显示:中国互联网支付 ...
- Qt5笔记之数据库(五)SQL表格模型QSqlTableModel
教程网址:http://www.qter.org/portal.php?mod=view&aid=57 0.打开tablemodel.pro文件,加上: QT += coregui sql 注 ...
- JDK的安装和环境变量配置
1.安装JDK开发环境 下载网站: http://www.oracle.com/technetwork/java/javase/downloads/index.html 进入后选择Accept Lic ...
- 九度oj 题目1074:对称平方数
题目1074:对称平方数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6422 解决:2912 题目描述: 打印所有不超过n(n<256)的,其平方具有对称性质的数. 如11*11 ...
- 自己打断点走的struts流程&拦截器工作原理
①. 请求发送给 StrutsPrepareAndExecuteFilter ②. StrutsPrepareAndExecuteFilter 判定该请求是否是一个 Struts2 请 求(Actio ...
- wait和waitpid函数
来源:http://hohahohayo.blog.163.com/blog/static/120816010200971210230362/ wait(等待子进程中断或结束)表头文件 #in ...
- hdu - 2645 find the nearest station (bfs水)
http://acm.hdu.edu.cn/showproblem.php?pid=2645 找出每个点到距离最近的车站的距离. 直接bfs就好. #include <cstdio> #i ...
- Codeforces 629D Babaei and Birthday Cake(线段树优化dp)
题意: n个蛋糕编号从小到大编号,j号蛋糕可以放在i号上面,当且仅当j的体积严格大于i且i<j,问最终可得的最大蛋糕体积. 分析: 实质为求最长上升子序列问题,设dp[i]从头开始到第i位的最长 ...
- freemarker导出word的一些问题
首先,了解下freemarker导出word的流程: 参考https://www.cnblogs.com/llfy/p/9303208.html 异常一: freemarker.core.ParseE ...
- Redis集群方案之主从复制(待实践)
Redis有主从复制的功能,一台主可以有多台从,从还可以有多台从,但是从只能有一个主.并且在从写入的数据不会复制到主. 配置 在Redis中,要实现主从复制架构非常简单,只需要在从数据库的配置文件中加 ...