传送门

首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移

\[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]
\]

然后维护两个前缀和\(s1,s2\),分别表示与当前列相差为偶数的前缀和以及与当前列相差为奇数的前缀和,那么可以这样转移

\[s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]
\]

\[s2[i+1][j]=s1[i][j]
\]

然而直接转移会T,我们考虑用矩阵乘法来优化。构造一个\(1*2n\)的矩阵表示答案,左边表示\(f[i]\),右边表示\(f[i-1]\),那么要构造一个\(2n*2n\)的转移矩阵满足乘上之后左边变为\(f[i+1]\),右边为\(f[i]\),那么大概是这么个东西(\(n=5\)的情况,图片网上偷的)



然后最后前缀和减一减就好了

//minamoto
#include<bits/stdc++.h>
#define R register int
#define fp(i,a,b) for(R i=a,T=b+1;i<T;++i)
#define fd(i,a,b) for(R i=a,T=b-1;i>T;--i)
using namespace std;
const int P=30011;
int n,m;
struct node{
int a[105][105];
node(){memset(a,0,sizeof(a));}
int *operator [](const R &x){return a[x];}
node operator *(node &b){
node res;
fp(i,1,n)fp(j,1,n)fp(k,1,n)
res[i][j]=(res[i][j]+a[i][k]*b[k][j])%P;
return res;
}
}I,A,B;
node ksm(node x,R y){
node res;fp(i,1,n)res[i][i]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
fp(i,1,n)I[i][i]=I[i+n][i]=I[i][i+n]=1;
fp(i,1,n-1)I[i+1][i]=I[i][i+1]=1;
n<<=1,A=ksm(I,m-2),B=A*I;
printf("%d\n",(B[1][n>>1]-A[1][n]+P)%P);
return 0;
}

P3990 [SHOI2013]超级跳马的更多相关文章

  1. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  2. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  3. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  4. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  5. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  6. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  7. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  8. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  9. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

随机推荐

  1. Java反射机制(Reflect)解析-----https://www.cnblogs.com/fzz9/p/7738381.html

    Java反射机制(Reflect)解析-----https://www.cnblogs.com/fzz9/p/7738381.html

  2. Jupyter notebook使用笔记

    常用快捷键 For a Cell,   Blue -> selecting. Green -> editing. Esc -> exist edit When the cell is ...

  3. 动态规划之最长递增子序列(LIS)

           在一个已知的序列{ a1,a2,……am}中,取出若干数组成新的序列{ ai1, ai2,…… aim},其中下标 i1,i2, ……im保持递增,即新数列中的各个数之间依旧保持原数列中 ...

  4. [SPOJ8222]Substrings

    [SPOJ8222]Substrings 试题描述 You are given a string S which consists of 250000 lowercase latin letters ...

  5. [codeforces471D]MUH and Cube Walls

    [codeforces471D]MUH and Cube Walls 试题描述 Polar bears Menshykov and Uslada from the zoo of St. Petersb ...

  6. T1003 电话连线 codevs

    http://codevs.cn/problem/1003/ 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 一个国家有n个城市 ...

  7. JDBC示例(增删查改)

    前提: 1.项目中引入MySQL的JAR包,POM参考如下配置: <!-- mysql-connector-java --> <!-- http://mvnrepository.co ...

  8. ETL增量单表同步简述_根据dateTime增量

    ETL增量单表同步简述 1. 实现需求 当原数据库的表有新增.更新.删除操作时,将改动数据同步到目标库对应的数据表. 2. 设计思路 设计总体流程图如下: 步骤简单说明: 1.设置job的执行属性,如 ...

  9. 一个简单的Java文件工具类

    package com.xyworkroom.ntko.util; import java.io.File; import java.io.FileInputStream; import java.i ...

  10. pycharm支持react

    安装nodejs插件 使能node 出现下面的变化,在scope里可以定义使用的范围 创建react项目 使能eslint规则检查功能 配置前端启动脚本: https://www.jetbrains. ...