传送门

首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移

\[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]
\]

然后维护两个前缀和\(s1,s2\),分别表示与当前列相差为偶数的前缀和以及与当前列相差为奇数的前缀和,那么可以这样转移

\[s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]
\]

\[s2[i+1][j]=s1[i][j]
\]

然而直接转移会T,我们考虑用矩阵乘法来优化。构造一个\(1*2n\)的矩阵表示答案,左边表示\(f[i]\),右边表示\(f[i-1]\),那么要构造一个\(2n*2n\)的转移矩阵满足乘上之后左边变为\(f[i+1]\),右边为\(f[i]\),那么大概是这么个东西(\(n=5\)的情况,图片网上偷的)



然后最后前缀和减一减就好了

//minamoto
#include<bits/stdc++.h>
#define R register int
#define fp(i,a,b) for(R i=a,T=b+1;i<T;++i)
#define fd(i,a,b) for(R i=a,T=b-1;i>T;--i)
using namespace std;
const int P=30011;
int n,m;
struct node{
int a[105][105];
node(){memset(a,0,sizeof(a));}
int *operator [](const R &x){return a[x];}
node operator *(node &b){
node res;
fp(i,1,n)fp(j,1,n)fp(k,1,n)
res[i][j]=(res[i][j]+a[i][k]*b[k][j])%P;
return res;
}
}I,A,B;
node ksm(node x,R y){
node res;fp(i,1,n)res[i][i]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
fp(i,1,n)I[i][i]=I[i+n][i]=I[i][i+n]=1;
fp(i,1,n-1)I[i+1][i]=I[i][i+1]=1;
n<<=1,A=ksm(I,m-2),B=A*I;
printf("%d\n",(B[1][n>>1]-A[1][n]+P)%P);
return 0;
}

P3990 [SHOI2013]超级跳马的更多相关文章

  1. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  2. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  3. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  4. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  5. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  6. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  7. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  8. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  9. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

随机推荐

  1. Python接口测试之unittest框架(五)

    Test-driven development(TDD)开发模式在今天已经不是什么新奇的事了,它的开发思维是在开发一个产品功能的时候,先 编写好该功能的测试代码,在编写开发比如,比如要写二个数相除的函 ...

  2. android中webview的实现

    设置从当前页面打开链接,而不是跳转到系统默认浏览器打开: webview.setWebViewClient(new WebViewClient(){ @Override public boolean ...

  3. POJ 1182_食物链

    题意: 三种动物A,B,C,A吃B,B吃C,C吃A, 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同类. 第二种说法是" ...

  4. js程序基础字符串具体

    1.     .charAt()里面写数字 在一般浏览器上相当于方括号  可是由于IE6的存在他就有了用处  由于IE6不兼容方括号 2.     charCodeAt()    和charAt几乎相 ...

  5. JAVA —— String is immutable. What exactly is the meaning? [duplicate]

    question: I wrote the following code on immutable Strings. public class ImmutableStrings { public st ...

  6. centos 7 静态IP,指定DNS

    cd /etc/sysconfig/network-scripts/ 找到对应的网卡,配置并编辑 ls -l vim ifcfg-em1 配置例子: TYPE="Ethernet" ...

  7. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  8. easyui datagrid 禁止选中行 EF的增删改查(转载) C# 获取用户IP地址(转载) MVC EF 执行SQL语句(转载) 在EF中执行SQL语句(转载) EF中使用SQL语句或存储过程 .net MVC使用Session验证用户登录 PowerDesigner 参照完整性约束(转载)

    easyui datagrid 禁止选中行   没有找到可以直接禁止的属性,但是找到两个间接禁止的方式. 方式一: //onClickRow: function (rowIndex, rowData) ...

  9. HTTP要点概述:七,编码,压缩传输,分块传输

    一,编码: HTTP 在传输数据时可以按照数据原貌直接传输,但也可以在传输过程中通过编码提升传输速率.通过在传输时编码,能有效地处理大量的访问请求.但是,编码的操作需要计算机来完成,因此会消耗更多的 ...

  10. 彻底弄懂px,em和rem的区别

    国内的设计大师都喜欢用px,而国外的网站大都喜欢用em和rem,那么三者有什么区别,又各自有什么优劣呢? px特点: 1.IE无法调整那些使用px作为单位的字体大小: 2.国外大部分网站能够调整的原因 ...