传送门

首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移

\[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]
\]

然后维护两个前缀和\(s1,s2\),分别表示与当前列相差为偶数的前缀和以及与当前列相差为奇数的前缀和,那么可以这样转移

\[s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]
\]

\[s2[i+1][j]=s1[i][j]
\]

然而直接转移会T,我们考虑用矩阵乘法来优化。构造一个\(1*2n\)的矩阵表示答案,左边表示\(f[i]\),右边表示\(f[i-1]\),那么要构造一个\(2n*2n\)的转移矩阵满足乘上之后左边变为\(f[i+1]\),右边为\(f[i]\),那么大概是这么个东西(\(n=5\)的情况,图片网上偷的)



然后最后前缀和减一减就好了

//minamoto
#include<bits/stdc++.h>
#define R register int
#define fp(i,a,b) for(R i=a,T=b+1;i<T;++i)
#define fd(i,a,b) for(R i=a,T=b-1;i>T;--i)
using namespace std;
const int P=30011;
int n,m;
struct node{
int a[105][105];
node(){memset(a,0,sizeof(a));}
int *operator [](const R &x){return a[x];}
node operator *(node &b){
node res;
fp(i,1,n)fp(j,1,n)fp(k,1,n)
res[i][j]=(res[i][j]+a[i][k]*b[k][j])%P;
return res;
}
}I,A,B;
node ksm(node x,R y){
node res;fp(i,1,n)res[i][i]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
fp(i,1,n)I[i][i]=I[i+n][i]=I[i][i+n]=1;
fp(i,1,n-1)I[i+1][i]=I[i][i+1]=1;
n<<=1,A=ksm(I,m-2),B=A*I;
printf("%d\n",(B[1][n>>1]-A[1][n]+P)%P);
return 0;
}

P3990 [SHOI2013]超级跳马的更多相关文章

  1. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  2. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  3. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  4. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  5. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  6. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  7. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  8. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  9. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

随机推荐

  1. 九度oj 题目1203:IP地址

    题目1203:IP地址 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3636 解决:1800 题目描述: 输入一个ip地址串,判断是否合法. 输入: 输入的第一行包括一个整数n(1< ...

  2. [luoguP1077] 摆花(DP)

    传送门 f[i][j] 表示前 i 种花,摆 j 盆的方案数    j f[i][j] =  Σ f[i - 1][j] k=max(0, j - a[i]) 博客园这个公式该怎么打啊.. ——代码( ...

  3. bzoj 3224 NOI2004郁闷的出纳员

    NOI2004郁闷的出纳员 2013年12月26日6,1818 输入描述 Input Description 第一行有两个非负整数n和min.n表示下面有多少条命令,min表示工资下界. 接下来的n行 ...

  4. [NOIP2005] 提高组 洛谷P1053 篝火晚会

    题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”.在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有n个同学,编号从1到n.一开始,同学们按照 ...

  5. redis可视化界面的操作【二十一】

    1.安装  2.linux服务器中开启linux服务 root@qiaozhi:~# cd /usr/local/redis root@qiaozhi:/usr/local/redis# ./bin/ ...

  6. msp430入门学习11

    msp430的定时器--看门狗 msp430入门学习

  7. [bzoj2982]combination_卢卡斯

    Combination bzoj-2982 题目大意:求$C_n^m/%10007$. 注释:$1\le n,m\le 2\cdot 10^9$. 想法:裸卢卡斯定理. 先处理出$mod$数之内的阶乘 ...

  8. 二级域名相同的情况下子页面调用父页面的js方法

    这两天项目遇到这种需求.项目是一个平台级系统,其中嵌入了多款应用.在平台上可以使用这些应用操作业务. 现在产品提出了个需求:即在A应用中需要调用js方法来打开B应用. 处理方法是:平台js中给出个打开 ...

  9. web常见之音乐播放器

    代码来源于:这位Github小伙伴,我只负责解说! 效果图如下: 先上HTML代码 源码: <!DOCTYPE html> <html> <head> <me ...

  10. Redis学习笔记3-Redis5个可运行程序命令的使用

    在redis安装文章中,说到安装好redis后,在/usr/local/bin下有5个关于redis的可运行程序.以下关于这5个可运行程序命令的具体说明. redis-server Redisserv ...