LCA的倍增算法
LCA,即树上两点之间的公共祖先,求这样一个公共祖先有很多种方法:
暴力向上:O(n)
每次将深度大的点往上移动,直至二者相遇
树剖:O(logn)
在O(2n)预处理重链之后,每次就将深度大的沿重链向上,直至二者在一条链上
tarjan_lca:离线O(n+m)
先记录所有的询问,对树进行一次dfs,对于搜索到的点u,先将点u往下搜,再将点u与父节点所在集合合并,之后对于它的所有询问(u,v),若v已被访问,那么找v所在集合的祖先e,则e就是u与v的lca
但我们今天要讲的是
倍增lca
实现
void dfs(int u,int fa){
dep[u] = dep[fa] + 1;
f[u][0] = fa;
for (int k = head[u]; k != -1; k = edge[k].next)
if (edge[k].to != fa)
dfs(edge[k].to,u);
}
求深度
void cal(){
for (int i = 1; (1<<i) <= N; i++)
for(int u = 1; u <= N; u++)
f[u][i] = f[f[u][i - 1]][i - 1];
}
预处理
int lca(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
int d = dep[u] - dep[v];
for (int i = 0; (1<<i) <= d; i++)
if ((1<<i) & d)
u = f[u][i];
if (u != v){
for (int i = (int)log(N); i >= 0; i--)
if (f[u][i] != f[v][i]){
u = f[u][i];
v = f[v][i];
}
return f[u][0];
}
else return u;
}
LCA的倍增算法的更多相关文章
- Lca 之倍增算法
引入: 比如说要找树上任意两个点的路上的最大值.如果是一般的做法 会 接近o(n)的搜,从一个点搜到另一个点,但是如果询问多了复杂度就很高了. 然后我们会预处理.预处理是o(n²)的,询问是o(1)的 ...
- 关于树论【LCA树上倍增算法】
补了一发LCA,表示这东西表面上好像简单,但是细节真挺多. 我学的是树上倍增,倍增思想很有趣~~(爸爸的爸爸叫奶奶.偶不,爷爷)有一个跟st表非常类似的东西,f[i][j]表示j的第2^i的祖先,就是 ...
- LCA(最近公共祖先)之倍增算法
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- 关于LCA的倍增解法的笔记
emmmmm近日刚刚学习了LCA的倍增做法,写一篇BLOG来加强一下印象w 首先 何为LCA? LCA“光辉”是印度斯坦航空公司(HAL)为满足印度空军需要研制的单座单发轻型全天候超音速战斗攻击机,主 ...
- [模板]LCA的倍增求法解析
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【一个蒟蒻的挣扎】LCA (倍增)
#include<cstdio> #include<iostream> #include<cstring> using namespace std; struct ...
- LCA树上倍增求法
1.LCA LCA就是最近公共祖先(Least common ancestor),x,y的LCA记为z=LCA(x,y),满足z是x,y的公共祖先中深度最大的那一个(即离他们最近的那一个)qwq 2. ...
随机推荐
- linux、WINDOWS命令行下查找和统计行数
linux : 例子: netstat -an | grep TIME_WAIT | wc -l | 管道符 grep 查找命令 wc 统计命令 windows: 例子: netstat -an | ...
- C# List<string> 的Contains方法 是区分大小写的
List<string> 的Contains 是区分大小写的 代码: List<string> test = new List<string>(); test.A ...
- php开发文章发布示例(正则表达式实例开发)
存档: post.php <form method="post" action="viewthread.php" target="_blank& ...
- requests,unittest——多接口用例,以及需要先登录再发报的用例
之前写过最简单的接口测试用例,本次利用unittest进行用例管理,并出测试报告,前两个用例是两个不同网页的get用例,第三个是需要登录才能访问的网页A,并在其基础上访问一个需要在A页面点开链接才能访 ...
- WebGL中使用window.requestAnimationFrame创建主循环
今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...
- 3星|李开复《AI·未来》:中国创业公司有独特优势,人工智能可能会加剧社会的不平等与不稳定
主要内容:作者对自己一些经历的回顾,对中美两国人工智能行业的回顾与展望. 作者认为中国的创业公司比美国节奏更快工作更拼命,深圳在硬件创新上远远领先于美国,中国创业公司们走出了一条跟美国不同的路. 作者 ...
- 二维DCT变换
DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩.经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是 ...
- Scrum立会报告+燃尽图(Beta阶段第六次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2388 项目地址:https://coding.net/u/wuyy694 ...
- Mac安装jee开发环境,webservice环境搭建
一.下载安装包 jdk(去官网下载) eclipse (去官网下载) tomcat(官网有9.0了)http://tomcat.apache.org/download-80.cgi#8.0.32 下载 ...
- 201621123037 《Java程序设计》第4周学习总结
#Week04-面向对象设计与继承 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键词:超级父类."is-a".父类.子类.重载.继承.多态 1.2 尝 ...