1.常用的方式通过sparksession读取外部文件或者数据生成dataset(这里就不讲了)
  注: 生成Row对象的方法提一下:RowFactory.create(x,y,z),取Row中的数据使用row.getAs("列名")来获取对应的列值或者row.getInt(0),row.getString(1)(但这个要注意顺序)

2.通过调用createDataFrame生成Dataset
通过反射的方式将非json格式的RDD转换成DataFrame(不建议使用)

自定义类要可序列化
自定义类的访问级别是Public
RDD转成DataFrame后会根据映射将字段按Assci码排序
将DataFrame转换成RDD时获取字段两种方式,一种是df.getInt(0)下标获取(不推荐使用),另一种是df.getAs(“列名”)获取(推荐使用)
关于序列化问题:
             1.反序列化时serializable 版本号不一致时会导致不能反序列化。
             2.子类中实现了serializable接口,父类中没有实现,父类中的变量不能被序列化,序列化后父类中的变量会得到null。
             注意:父类实现serializable接口,子类没有实现serializable接口时,子类可以正常序列化
            3.被关键字transient修饰的变量不能被序列化。
            4.静态变量不能被序列化,属于类,不属于方法和对象,所以不能被序列化。
           另外:一个文件多次writeObject时,如果有相同的对象已经写入文件,那么下次再写入时,只保存第二次写入的引用,读取时,都是第一次保存的对象。

 /**方法1
* 注意:
* 1.自定义类必须是可序列化的
* 2.自定义类访问级别必须是Public
* 3.RDD转成DataFrame会把自定义类中字段的名称按assci码排序
*/
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("RDD");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt");
JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Person call(String s) throws Exception {
Person p = new Person();
p.setId(s.split(",")[0]);
p.setName(s.split(",")[1]);
return p;
}
});
/**
* 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
* 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame
*/
DataFrame df = sqlContext.createDataFrame(personRDD, Person.class); class Person implements Serializable {
private static final long serialVersionUID = -6907013906164009798L;
private String Id;
private String name; public void setId(String appId) {
this.appId = appId;
} public String getId() {
return appId;
} public String getname() {
return detail;
} public void setname(String detail) {
this.detail = detail;
}
}
 //方法2:
JavaRDD<String> lineRDD = sc.textFile("./sparksql/person.txt");
/**
* 转换成Row类型的RDD
*/
JavaRDD<Row> rowRDD = lineRDD.map(new Function<String, Row>() { /**
*
*/
private static final long serialVersionUID = 1L; @Override
public Row call(String s) throws Exception {
return RowFactory.create(//这里字段顺序一定要和下边 StructField对应起来
String.valueOf(s.split(",")[0]),
String.valueOf(s.split(",")[1]),
);
}
});
/**
* 动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库
*/
List<StructField> asList =Arrays.asList(//这里字段顺序一定要和上边对应起来
DataTypes.createStructField("id", DataTypes.StringType, true),
DataTypes.createStructField("name", DataTypes.StringType, true)
);
StructType schema = DataTypes.createStructType(asList);
/*
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.StringType, false, Metadata.empty()),
new StructField("name", DataTypes.StringType, false, Metadata.empty()),
});
*/
//DataFrame df = sqlContext.createDataFrame(List<Row> ,schema)这个方法也可以
DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
 //方法3
public static class Person implements Serializable {
private String name;
private int age; public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
}
} // Create an instance of a Bean class
Person person = new Person();
person.setName("Andy");
person.setAge(32); // Encoders are created for Java beans
Encoder<Person> personEncoder = Encoders.bean(Person.class);
Dataset<Person> javaBeanDS = spark.createDataset(
Collections.singletonList(person),
personEncoder
);
javaBeanDS.show();
// +---+----+
// |age|name|
// +---+----+
// | 32|Andy|
// +---+----+ // Encoders for most common types are provided in class Encoders
Encoder<Integer> integerEncoder = Encoders.INT();
Dataset<Integer> primitiveDS = spark.createDataset(Arrays.asList(1, 2, 3), integerEncoder);
Dataset<Integer> transformedDS = primitiveDS.map(
(MapFunction<Integer, Integer>) value -> value + 1,
integerEncoder);
transformedDS.collect(); // Returns [2, 3, 4] // DataFrames can be converted to a Dataset by providing a class. Mapping based on name
String path = "examples/src/main/resources/people.json";
Dataset<Person> peopleDS = spark.read().json(path).as(personEncoder);
peopleDS.show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

生成dataset的几种方式的更多相关文章

  1. python 全栈开发,Day94(Promise,箭头函数,Django REST framework,生成json数据三种方式,serializers,Postman使用,外部python脚本调用django)

    昨日内容回顾 1. 内容回顾 1. VueX VueX分三部分 1. state 2. mutations 3. actions 存放数据 修改数据的唯一方式 异步操作 修改state中数据的步骤: ...

  2. Pandas 基础(3) - 生成 Dataframe 的几种方式

    这一节想总结一下 生成 Dataframe 的几种方式: CSV Excel python dictionary List of tuples List of dictionary 下面分别一一介绍具 ...

  3. 数据可视化之powerBI技巧(七)从Excel到PowerBI,生成笛卡尔积的几种方式

    假如分别有100个不重复的姓和名,把每个姓和名进行组合匹配,就可以得到一万个不重复的姓名组合,这种完全匹配的方式就是生成一个姓名的笛卡尔积. 下面就来看看生成笛卡尔积的几种方式,为了展现的方便,以5个 ...

  4. spring生成EntityManagerFactory的三种方式

    spring生成EntityManagerFactory的三种方式 1.LocalEntityManagerFactoryBean只是简单环境中使用.它使用JPA PersistenceProvide ...

  5. php 生成word的三种方式

    原文地址 http://www.jb51.net/article/97253.htm 最近工作遇到关于生成word的问题 现在总结一下生成word的三种方法. btw:好像只要是标题带PHP的貌似点击 ...

  6. Android 生成LayoutInflater的三种方式

    通俗的说,inflate就相当于将一个xml中定义的布局找出来. 因为在一个Activity里如果直接用findViewById()的话,对应的是setConentView()的那个layout里的组 ...

  7. 使用NVelocity生成内容的几种方式

    使用NVelocity也有几个年头了,主要是在我的代码生成工具Database2Sharp上使用来生成相关代码的,不过NVelocity是一个非常不错的模板引擎,可以用来生成文件.页面等相关处理,非常 ...

  8. PHP生成word的三种方式

    摘要: 最近工作遇到关于生成word的问题 现在总结一下生成word的三种方法. btw:好像在博客园发表博客只要是标题带PHP的貌似点击量都不是很高(哥哥我标题还是带上PHP了),不知道为什么,估计 ...

  9. 利用"SQL"语句自动生成序号的两种方式

    1.首先,我们来介绍第一种方式: ◆查询的SQL语句如下: select row_number() over (order by name) as rowid, sysobjects.[id] fro ...

随机推荐

  1. ASP.NET MVC 自动模型验证

    经常看到这个代码 在controller 中写入验证模型,每个需要验证的action 都写-.. ,就问你烦不烦~ 可以利用 ASP.NET MVC 的 action 拦截机制 自动处理. 1 新建验 ...

  2. Maven 逆向工程

    pom.xml <build> <plugins> <plugin> <groupId>org.mybatis.generator</groupI ...

  3. nodejs的事件轮询机制

    1.timers定时器阶段 执行定时器到点的回调函数(所有定时器setTimeout / setInterval的回调函数都在这个阶段执行) 2.idle prepare 准备阶段 TCP错误回调 3 ...

  4. vue+echarts实现可拖动节点的折现图(支持拖动方向和上下限的设置)

    本篇文档主要是利用echarts实现可拖动节点的折现图,在echarts中找到了一个demo,传送门:https://echarts.baidu.com/examples/editor.html?c= ...

  5. S/4 HANA中发票输出切换回NAST

    在S/4 HANA中,新的输出管理Output Management叫做SAP S/4HANA output control(输出控制),是基于BRF+的,而不是原来基于NAST的.关于S4新的输出控 ...

  6. ansible常用配置

    1.什么是Ansible 部署参考连接:http://www.ansible.com.cn/ ansible是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet.cfeng ...

  7. OpenStack(queens)最小化搭建记录——控制与计算共两个节点

    境: 2台安装了centos7-minimal的主机 ip地址: 10.132.226.103/24 (controller) 10.132.226.104/24 (compute1) 1.配置主机名 ...

  8. spring定时任务注解@Scheduled的记录

    spring 定时任务@Scheduled 转自https://www.cnblogs.com/0201zcr/p/5995779.html 1.配置文件 <?xml version=" ...

  9. 苹果App Store提交app审核时EULA(终端用户软件使用条款)的注意事项等政策解读

    写在前面,今天是2014年10月14日,以下内容可能会随着时间的推进而失效,请注意时效性 当在App Store提交app审核的时候,苹果通常会要求开发者提供一个EULA,苹果默认提供了一个,地址:  ...

  10. doctrine 操作实例(转)

    话说这篇文章真是在没有任何实例的情况下帮了大忙 另外附上我自己的一个完整demo:https://github.com/LearnForInterest/material 结合了ci框架的doctri ...