小水题。题意就是不断随机放一个 \(1 \times 2\) 骨牌,然后取走里面的东西。求期望多少次取走所有的东西。然后有一维很小。

首先显然 minmax 容斥,将最后取走转化为钦定一些物品,求第一个取走的期望。

然后显然第一个取走的期望只和剩下能盖到物品的骨牌数有关。

一个骨牌能盖到物品只和相邻的两个格子是否钦定了物品有关。这个显然可以轮廓线优化。

然后套用 minmax 容斥公式直接算出来。

复杂度 \(O\left(n^2m^2 2^n\right)\)

数组清空写错了,导致 dp 状态 disappeared……调了好一会……

#include <bits/stdc++.h>

const int mod = 998244353;
typedef long long LL;
void reduce(int & x) { x += x >> 31 & mod; }
int mul(int a, int b) { return (LL) a * b % mod; }
int fastpow(int a, int b, int res = 1) {
for (; b; b >>= 1, a = mul(a, a)) if (b & 1) res = mul(res, a);
return res;
}
int dp[2][1 << 6][1200], ansl[1200];
int n, m;
bool mat[110][10];
char buf[110];
int main() {
std::ios_base::sync_with_stdio(false), std::cin.tie(0);
std::cin >> n >> m;
const int E = n * (m - 1) + m * (n - 1);
for (int i = 0; i != n; ++i) {
std::cin >> buf;
for (int j = 0; j != m; ++j)
mat[j][i] = buf[j] == '*';
}
const int U = 1 << n;
int lst = 0, now = 1;
dp[now][0][0] = mod - 1;
for (int i = 0; i != m; ++i) {
for (int j = 0; j != n; ++j) {
std::swap(lst, now);
for (int k = 0; k < U; ++k)
memset(dp[now][k], 0, E + 1 << 2);
bool can = mat[i][j];
for (int l = 0; l != U; ++l) {
int delta = 0;
if (i) delta += ~l >> j & 1;
if (j) delta += ~l >> j - 1 & 1;
int tar = l & ~(1 << j), tar2 = tar | 1 << j;
for (int k = 0; k <= E; ++k)
if (int t = dp[lst][l][k]) {
reduce(dp[now][tar][k + delta] += t - mod);
if (can) reduce(dp[now][tar2][k] -= t);
}
}
}
}
for (int i = 0; i != U; ++i)
for (int j = 0; j <= E; ++j)
reduce(ansl[j] += dp[now][i][j] - mod);
int ans = 0;
for (int i = 0; i < E; ++i)
reduce(ans += fastpow(E - i, mod - 2, ansl[i]) - mod);
ans = mul(ans, E);
std::cout << ans << std::endl;
return 0;
}

【集训队作业2018】小Z的礼物的更多相关文章

  1. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  2. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  3. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  4. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

  5. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

  6. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  7. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  8. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  9. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  10. UOJ#418. 【集训队作业2018】三角形

    #418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...

随机推荐

  1. Q_OBJECT提供了信号槽机制、国际化机、RTTI 的反射能力(cpp中使用Q_OBJECT导致无法处理moc,就需要#include “moc_xxx.h”)

     只有继承了QObject类的类,才具有信号槽的能力.所以,为了使用信号槽,必须继承QObject.凡是QObject类(不管是直接子类还是间接子类),都应该在第一行代码写上Q_OBJECT.不管是不 ...

  2. frp基础操作

    [common]privilege_mode = true privilege_token = ****bind_port = 7000 dashboard_user = 444444dashboar ...

  3. windowsformshost mouse event not transmit to it's parent control

    in the case you can do it to fix: MouseEventArgs e = new MouseEventArgs(Mouse.PrimaryDevice, 0); e.R ...

  4. java lesson13Homework

    /** * 1. 字符串解析,现有字符串,“卡巴斯基#杀毒软件#免费版#俄罗斯#”,解析出每个元素. */ package String13Practice; public class String0 ...

  5. dev GridView 的组计和分组计

    /// <summary> /// //添加组计 /// </summary> private void SetGroupSummary(GridView gv, string ...

  6. HDU3085NightmareII题解--双向BFS

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3085 分析 大意就是一个男孩和一个女孩在网格里,同时还有两个鬼,男孩每轮走三步,女孩每轮走一步,与鬼曼 ...

  7. python之uWSGI和WSGI

    WSGI协议 首先弄清下面几个概念:WSGI:全称是Web Server Gateway Interface,WSGI不是服务器,python模块,框架,API或者任何软件,只是一种规范,描述web ...

  8. 关于学习电信nb-iot的小结

    关于这几天对nb-iot的学习的总结和遇到的坑 初步学习nb-iot,了解到了nb-iot对于传感器数据传输功能的强大: 废话不多说,对于nb-iot我们选择的有人的模块,选择B5频段也就是电信的nb ...

  9. 宝塔控制面板+wordpress搭建个人网站

    上个月买了服务器和域名之后就搁置了,今天有空闲就来配合教程尝试一下搭建个人网站,下面是网站搭建的详细过程以及中间的一些细节问题,写这篇文章的目的就是希望能够帮到一些小伙伴,或者为以后搭建网站做一些参考 ...

  10. vue中的常用三元

    点击事件的三元 <el-button type="primary" @click="edit == 'mod' ? sureModify() : submit()& ...